
ANL-77-49 ANL-77-49

UPDATING

THE SYMMETRIC INDEFINITE FACTORIZATION

WITH APPLICATIONS

IN A MODIFIED NEWTON'S METHOD

by

Danny C. Sorensen

UolC'tUt'USERDi

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U. S. ENERGY RESEARCH

AND DEVELOPMENT ADMINISTRATION

under Contract W-31-109-Eng-38

The facilities of Argonne National Laboratory are owned by the United States Govern
ment. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Energy Research and
Development Administration. Argonne Universities Association and The University of Chicago,
the University employs the staff and operates the Laboratory in accordance with poUcies and
programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin

NOTICE-

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Energy Research and Development Ad
ministration, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liabil-
ityor responsibility for the accuracy, completeness or use
fulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe
privately-owned rights. Mention of conunercial products,
their manufacturers, or their suppliers in this publication
does not imply or connote approval or disapproval of the
product by Argonne National Laboratory or the U. S. Energy
Research and Development Administration.

Printed in the United States of America
Available from

National Technical Information Service
U. S. Department of Connmerce

5285 Port Royal Road
Springfield, Virginia 22161

Price: Printed Copy $6.75; Microfiche $3.00

Distribution Category:
Mathematics and Computers

(UC-32)

ML-77-49

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois 60439

UPDATING THE SYMMETRIC INDEFINITE FACTORIZATION
WITH APPLICATIONS IN A MODIFIED NEWTON'S METHOD

by

Danny C. Sorensen

Applied Mathematics Division

Based on a thesis prepared for
the degree Doctor of Philosophy in Mathematics
from the University of California, San Diego

June 1977

TABLE OF CONTENTS
Page

List of Figures
List of Tables
List of Sjnnbols
Abstract

I. An Overview °

1. Introduction °
2. Newton-type Methods for Unconstrained Optimization 10
3. The Sjramietric Indefinite Decomposition 17
4. Computational Results and Conclusions 19

II. Updating Factorizations of Symmetric Matrices 21

1. Introduction 21
2. Description of the Algorithm 24
3. A Pictorial Description of the Algorithm 49

III. Error Analysis of the Updating Algorithm 55

1. Introduction 55
2. A Detailed Description of the Updating Algorithm 57
3. Floating Point Analysis 65

IV. The Use of Directions of Negative Curvature
in a Modified Newton Iteration 95

1. Introduction 95
2. Descent Directions 97
3. A Modification of the Armijo Steplength Procedure 100
4. Determining Directions of Negative Curvature 103
5. A Steplength Algorithm 107
6. Convergence of the Modified Newton Iteration 113
7. Conclusions 119

V. Computational Results 121

1. Introduction 121
2. Testing the Updating Algorithm 121
3. Testing the Modified Newton's Method 126

Appendix Al I39
Appendix A2 14X
Acknowledgments 3̂ 53
References]̂ 3̂

LIST OF FIGURES

1 Pivoting in the Updating Algorithm 49

2 A Search Along x-l-as 109

2
3 A Search Along x+a s+ad 110

2
4 The Curve x-l-a s+ad Ill

LIST OF TABLES

1 Operations Required at Step k 46

2 Results for Increasing Order 124

3 Results of a Long Range of Updates 125

4 Results of Tests with Standard Starts 132

5 Results from Using Finite Differences 133

6 Box's Function 134

7 EXP6 135

8 Gottfried's Function 136

9 Brown's Badly Scaled Problem 137

N O M E N C L A T U R E

List of Symbols

R The set of real numbers.

R The n-dimensional real vector space.

_mxn

K The space of mxn real matrices.

{ } The set of.

e Element inclusion.

c Set inclusion.

X ,A The transpose of a vector x or matrix A.

X y The inner product of two vectors x,y e R .

I'll The Euclidean norm; ||x|| = /x x

n
II • II The infinity norm; ||A|| = max ^ I ̂ j • I •

l<i<n j=l ^̂

I•I The absolute value function.

sgn(«) The algebraic sign function.

f: P -»• X A mapping f from a domain V into the set X.

8, f(x) The first partial derivative of f at x with respect to the

k-th argument.

9..f(x) The second partial derivative of f at x e R with respect to

the i-th and then the j-th argument.

A => B A implies B.

a, -> b a, approaches b.
IC iC

UPDATING THE SYMMETRIC INDEFINITE FACTORIZATION
WITH APPLICATIONS IN A MODIFIED NEWTON'S METHOD

by

Danny C. Sorensen

ABSTRACT

In recent years the use of quasi-Newton methods in optimization algo

rithms has inspired much of the research in an area of numerical linear

algebra called updating matrix factorizations. Previous research in this

area has been concerned with updating the factorization of a symmetric posi

tive definite matrix. Here, a numerical algorithm is presented for updating

the Symmetric Indefinite Factorization of Bunch and Parlett. The algorithm

2
requires only 0(n) arithmetic operations to update the factorization of an

nxn symmetric matrix when modified by a rank one matrix. An error analysis

of this algorithm is given. Computational results are presented that investi

gate the timing and accuracy of this algorithm.

Another algorithm is presented for the unconstrained minimization of a

nonlinear functional. The algorithm is a modification of Newton's method.

At points where the Hessian is indefinite the search for the next iterate is

conducted along a quadratic curve in the plane spanned by a direction of nega

tive curvature and a gradient related descent direction. The stopping

criteria for this search take into account the second order derivative infor

mation. The result is that the iterates are shown to converge globally to a

critical point at which the Hessian is positive semidefinite. Computational

results are presented which indicate that the method is promising.

Chapter I

An Overview

1. Introduction

In recent years the use of matrix methods in optimization algo

rithms has received an increasing amount of attention. Interesting

problems in numerical linear algebra have been generated by advances in

optimization methods. Similarly, new approaches to optimization methods

are sometimes made possible or even suggested by advances in numerical

linear algebra. Here the Bunch-Parlett factorization of a symmetric

indefinite matrix is used in a Newton-type method which is based on the

use of directions of negative curvature. In anticipation of the exten

sion of these ideas for use in a quasi-Newton method, we present and

analyze a method for updating this matrix factorization.

In this chapter the problems which shall be considered are

introduced and motivated. Chapters II and III are concerned with the

updating algorithm and should be considered as a unit. On the other

hand. Chapter IV is meant to be self-contained. For this reason some of

the same concepts are introduced in both places. The numbering of equa

tions is done separately in each chapter. For example, a reference

within a chapter to equation (2.1) means to refer to the equation

numbered (2.1) which will be found in Section 2 of that chapter. When

ever there is a cross reference between chapters it will be explicitly

mentioned.

10

2. Newton-type Methods for Unconstrained Optimization

One of the major problem areas of numerical analysis is the

minimization of a non-linear functional. If we denote the n-dimensional

real vector space by R and the real numbers by R, the problem is:

given a domain P c R" and a functional

f: P ̂ R

find X* e V such that

f(x*) ± f(x)

for all X e P.

Usually the task of trying to find a global minimum of f is too

difficult numerically, and we must be content with finding a local

minimum fcr f. That is, we seek

X* £

such that

f(x) 1 f(x*)

for all X e N(x*) c D where W(x*) is some neighborhood of x*.

Let

g(x) B

8:f(x)

= Vf(x)

be the gradient of f at x, and let

11

G(x)

9llf(x) d^^^ix)

92if(x) 922f(x)

3̂̂ f̂(x) ,^^Hx)

..3^^f(x)

..a2/(x)

..9 f(x) nn '

V^f(x)

be the Hessian of f at x. For a sequence {x, } we shall write

fj,= f(x^),

\ = S (x ^) ,

Gj^=G(x^).

Assume that f has two continuous derivatives on D. Then the

Hessian matrix is sjmmietric, and for any x, x e D we have

l l - vt. f(x) = f(x) + g(x)''(x-x) -I-^(X-X)''G(X)(X-X) + o(||x-x|r)

We write h(e) = o(e) if lim = 0. Thus f is modeled well locally

by the quadratic form defined by the first three terms of its Taylor

expansion about x. If the Hessian G(x) is positive definite then the

quadratic form

f(x) + g(x)'̂ (x-x) + |(x-x) ̂ G(x) (x-x)

has a minimum at

(2.1) X = X - G (x)g(x)

Formula (2.1) suggests the iteration

(2.2) Given x e P

for k=0,l,2,.

W = -̂k

'̂ k+l = ̂ k"'^

This is, of course, the well known Newton's method for finding a zero of

the gradient g(x). Thus Newton's method can be viewed as minimizing the

local quadratic model of f and also as attempting to find a point x*

which satisfies g(x*) = 0. This is Important since

(2.3) f has a local minimum at x* only if g(x*) = 0.

This method has two important properties that make it a very

powerful tool for the solution of unconstrained minimization problems.

The first of these is the basic simplicity of the Iteration (2.2). The

second and most important property of Newton's method is the local

quadratic rate of convergence of the iterates. Loosely stated this

means that when the iterates x, of (2.2) converge to a point x* with

G(x*) nonsingular, then eventually the number of significant digits in

the approximant x, doubles at each iteration. The more precise mathe

matical statement is contained in the following theorem. Before the

theorem is stated it will be necessary to introduce the notion of a

point of attraction. A point x* is a point of attraction for the itera

tion (2.2) if there is an open neighborhood N(x*) c P such that when

x^ e N(x*), the iterates defined by (2.2) all lie in P and converge to x*.

Theorem (2.1)

Assume that g: P ̂ |̂ -+• R is continuously differentiable on an

open neighborhood N(x*) c p of a point x* e P for which g(x*) = Q, and

G(x*) is nonsingular. Then x* is a point of attraction of the iteration

(2.2). If, in addition, there exists a positive constant L such that

|G(X) - G(x*)|| £ L|1X-X*|| for all x e W(x*) , then there exists a positive

constant C and a positive integer K such that k > K implies that

1x^+3. - ̂*" - l̂l̂ k - ̂ *l

A proof of Theorem (2.1) can be found in [17, p. 312].

There are some major difficulties in implementing Newton's

method in its basic form. The first of these difficulties is that there

is no reason for the Hessian to be positive definite at an iterate x,

which is far from a local minimum. Another difficulty is that the step

s, predicted by the quadratic model at x, may be too large or too small.

These difficulties have led to several modifications of Newton's

method. Many of the modifications have taken the form

(2.4) Given x_ e P

for k=0,l,2,.

W = -̂ k
^k+1 = ^ + \ " k

The symmetric matrix E, in (2.4) is chosen to insure that G is positive

definite. This implies that the direction s, satisfies

(2.5) %\ < °
Thus the directional derivative of f at x, in the direction s is nega

tive and the function must decrease initially in the direction s, . A

direction s, that satisfies (2.5) is called a descent direction. Once a

descent direction s, has been specified it is possible to determine a

positive number a, such that f(x,+a,s,) < f .

Of course, the particular way in which the matrix E, and the

14

scalar â^ are determined are crucial in analyzing the convergence of the

iteration (2.4). Some success has been achieved with iterations of type

(2.4) in specifying Eĵ .â ^ in such a way that the iterates x̂ ^ are globally

convergent to a critical point x* (i.e. a point x* with g(x*) = 0).

Whenever possible these algorithms reduce naturally to Newton's method

so that the local quadratic rate of convergence is retained.

However, work in this area is not yet complete. In particular,

no algorithm has yet been given which can guarantee global convergence

to a local minimum. How can Newton's method be modified so that the

resulting iterates converge globally to a local minimum for f? In

attempting to answer this question, we have developed an algorithm which

is different from iterations of type (2.4). This algorithm is presented

and analyzed in Chapter IV. The algorithm is based more explicitly on

the local quadratic model for f in that the Hessian is not modified.

Instead, directions of negative curvature are used in combination with

the more usual descent directions. The resulting iterates {x, } are

shown to be globally convergent to a point x* such that g(x*) = 0, and

G(x*) is positive semi-definite. Thus by basing the iteration more

closely on the quadratic model we obtain an iteration which converges to

a point X* that satisfies the second order necessary conditions

(2.6) f has a local minimum at x* only if g(x*) = 0,

and G(x*) is positive semi-definite.

Yet another drawback to a modified Newton's method is the

expense in terms of both computation and programming effort associated

with calculating the Hessian at each step of the iteration (2.4).

Attempts to overcome this undesirable feature have led to a great deal

of research in a class of methods called quasi-Newton methods. These

methods replace the Hessian G, with an approximation B, . A quasi-
1̂ k

Newton iteration has the form

(2.7) Given x- e P, and B_

for k=0,l,2,...

\"k = - %

k̂+1 = ̂ k + W

\+l = \ -̂ \

In iteration (2.7)

\ = "(\'Vk'%+i'gk>

is usually a rank one or rank two matrix with

(2.8) \ + l \ = ^k+l - §k

Equation (2.8) is called the quasi-Newton equation. The advantage of

iteration (2.7) over (2.4) is that the only new information required to

obtain B, from B, is the calculation of the gradient g, .. . The

1 2
computational savings is that only n instead of -rn scalar function

evaluations are required to obtain an approximate Hessian at step k.

Moreover, the task of programming the Hessian is avoided.

The price one pays for the computational savings obtained

through the use of a quasi-Newton method is that the local quadratic

rate of convergence that is enjoyed by iteration (2.4) is no longer

guaranteed. Instead, if the iterates {x, } defined by (2.7) converge to

a point X* where g(x*) = 0 and G(x*) is nonsingular, then

(2.10)
1^+1

-x*|

ki: iiv-*i = 0

16

under suitable restrictions on {B^} and G. A sequence {x̂ }̂ that satis

fies (2.10) is said to converge Q-superlinearly to x*. A thorough

account of iterations of type (2.7) can be found in the excellent survey

by Dennis and Mor^ [7].

Evidently, the linear systems

W = -«k

that must be solved at each step are central to the implementation of

these methods. Solving linear systems Ax = b using matrix factoriza

tions costs 1/3 as much as computing A and has been shown to be

numerically more stable than computing A . Since the linear systems

arising in the context of non-linear optimization have symmetric coeffi

cient matrices it is of great interest to obtain efficient and stable

methods for factoring symmetric matrices.

The advent of quasi-Newton methods has inspired a large portion

of the research in an area of numerical linear algebra called updating

matrix factorizations. Since the matrix B, ,, in (2.7) differs from B,

k+1 k

by at most a rank two matrix, one might expect that the factorization of

B, .. could be obtained with less computational effort if the information

contained in the factorization of B, were used. This has indeed been
k

found to be the case.

The types of quasi-Newton updating formulas that have been found

to be most successful so far have satisfied

(2.11a) B, symmetric => B symmetric,

(2.11b) B, positive definite => Bj^^^ positive definite.

For this reason, there has been much work concerned with updating

variants of the Cholesky factorization [9,13,14] of a symmetric positive

definite matrix. No algorithm has been given for maintaining and updat

ing the factorization of a symmetric (possibly indefinite) matrix. How

ever, there is at least one promising updating formula that does not

satisfy (2.11b): Powell's symmetric form of Broyden's update [18].

3. The Symmetric Indefinite Decomposition

The modified Newton method that is to be presented in Chapter IV

relies heavily on the factorization of a symmetric matrix given by Bunch

and Parlett [5] and later improved upon by Bunch and Kaufman [4]. One

would hope that the techniques developed for the modified Newton method

could be extended to a quasi-Newton method. As a step towards realizing

this extension, the updating problem for the sjrmmetric indefinite fac

torization has been studied. A numerical method for updating the

factorization of a symmetric matrix when followed by a rank one change

is presented in Chapter II. A detailed error analysis of this algorithm

is given in Chapter III.

As noted above, most of the work in quasi-Newton methods has

been concerned with maintaining positive definite approximations to the

Hessian. Hence the work in numerical linear algebra generated by these

methods has been primarily concerned with updating some form of

Cholesky's method for factoring a symmetric positive definite matrix.

The factorization of Bunch and Parlett does not require that the

matrix be positive definite. Given any symmetric matrix A e R this

algorithm produces a permutation matrix Q, a unit lower triangular

matrix M, and a block diagonal matrix D such that

QAQ*̂ = MDM*̂ .

The diagonal blocks of D are order one or two. If we call an arithmetic

operation a multiplication followed by an addition, then the number of

arithmetic operations required to obtain this decomposition is

1 3 2 2
Tn + 0(n). (If X = y a.n̂ with a, ^ 0 we write x = 0(n) and say x

k J=l'
is of order n .)

Another algorithm for factoring a symmetric indefinite matrix

was given by Aasen [1]. In that algorithm one obtains

QAQ'^ = LTL^ ,

where Q is a permutation matrix, L is unit lower triangular, and T is

1 3 2

tridiagonal. This factorization requires 711 + 0(n) arithmetic opera

tions also.

1 3 2
Since these factorizations both require rn + 0(n) operations,

an updating algorithm for obtaining the factorization of a symmetric

matrix A = A+U when the factorization of A is known should require at

2

most 0(n) arithmetic operations. Otherwise, there would be no compu

tational advantage over the altemative of actually computing the matrix

A and factoring the result. The updating algorithm presented in

Chapter II is concerned with the following problem:

Given A e R , A = A , z e R , a e R , let

QAQ = MDM be the Bunch-Parlett factorization

of A; let

7 A ^ t

A = A + azz

Find an algorithm to compute
QAQ*̂ = MDM*̂

2
which requires at most 0(n) arithmetic operations.

This algorithm makes use of the block structure of the matrix D.

We found no similar way to take advantage of the corresponding tridiago

nal matrix T in Aasen's factorization. At present we do not know of an

algorithm for updating the factorization of Aasen. The updating algo-

2 11 2
rithm that is presented here requires between n + 0(n) and -^n + 0(n)

0

operations. The method is shown to be stable as long as the factor M is

well conditioned with respect to solving linear systems. These state

ments are made precise in chapters II and III.

4. Computational Results and Conclusions

Chapter V is concerned with presenting computational evidence in

support of the theoretical work described in chapters II, III, IV. The

computations were carried out at Argonne National Laboratory using an

IBM 370/195. All computations were done in double-precision arithmetic.

The updating algorithm has been tested for accuracy and timing

over a wide range of updating problems. We have included timings for

problems of various orders. The accuracy of solutions to linear

systems using the updating algorithm have been compared with solutions

obtained by computing and factoring A+azz at each step. The results

are very encouraging. They indicate that the bounds obtained in our

analysis are quite pessimistic and that the algorithm does not break

down even when the updating process is applied over many iterations.

The unconstrained optimization algorithm was applied to many of

the standard test problems which appear in the literature. Although

more work is needed to obtain an algorithm that can be recommended for

20

general use, the initial results show this algorithm to be competitive

with the algorithm of Gill and Murray [11]. In any case the underlying

idea is worthy of further research. It would be of great interest if

the ideas could be extended to a quasi-Newton method and to a con

strained optimization algorithm.

Chapter II

Updating Factorizations of Symmetric Matrices

1. Introduction

Methods in numerical linear algebra are usually concerned with

the solution of a single linear problem. For example, a particular

method might be concerned with the solution of the linear system Ax = b

n^n r»n

where A e R and x,b e R . Yet in practice we are often faced with

solving a sequence of linear problems which are closely related. For

instance, we may be interested in solving a sequence of nxn linear

systems

(1.1) \ ^ = \ \ _

\+l = \ + \i

In many cases of interest U is of low rank. Often the rank of U, is

one or two.

Direct methods for solving the main problems of numerical linear

algebra have come to rely heavily upon the use of matrix factorizations.

For full matrices the price (in terms of arithmetic operations) of such

factorizations is generally substantial. For instance, the relevant

3
factorization needed to solve (1.1) requires 0(n) arithmetic operations

for each A^. However, when U = \j.-i~\ l̂ ŝ low rank, one might expect

that the factorization of A, .. could be computed in an order of magni

tude fewer operations using our knowledge of the factorization of A^.

For example, in (1.1) we would aim for algorithms which require only

2
0(n) arithmetic operations.

Here we shall be concerned with factorizations used in solving

the problem (1.1) when the matrices A^ and U are symmetric, and where

each U^ is a rank one matrix. Then (1.1) has the form

^'-'^ Vk = \ '
^>k=l,2,

Vl = \ + Vk\J
where each z e R'̂ , a e R, A^ = A5. This problem arises for instance

in quasi-Newton methods for optimization problems [7].

Thus we shall concern ourselves with obtaining the factorization

of

(1.3) A = A + ozz*̂

not by forming A explicitly, but by using the factorization of A. Such

a process is called updating a matrix factorization.

There are two important and very distinct cases:

(1) A is positive definite,

(ii) A is indefinite.

In case (i) A may be factored in a numerically stable way into

A = LDL*̂ ,

where L e R is a unit lower triangular matrix, and D e R is a

diagonal matrix with positive diagonal elements. No pivoting is re

quired to obtain numerical stability in the positive definite case.

However, in case (ii) such a factorization may not even exist. For

example consider the matrix

(? J) -
A numerically stable method for obtaining a factorization of A in case

(ii) is given in [5] by Bunch and Parlett, and is later revised in [4]

by Bunch and Kaufman. By this method one obtains a permutation matrix

Q, a lower triangular matrix M, and a block diagonal matrix D such that

(1.4) QAQ*̂ = MDM^ .

The diagonal blocks of D are order one or two. Whenever D.,, . ?̂ 0
1+1,1

then M = 0. Also, M.. = 1 for all i.
1~1 y 1 11

The case in (1.3) where both A and A are theoretically known to

be positive definite has been studied and updating algorithms are given

m [9,13,14]. The case where A and A are symmetric but possibly indefi

nite has not been studied.

In the following sections we shall present and analyze an algo

rithm for computing Q, M, D, when given the factorization (1.4), such

that

(1.5) QAQ^ = MDM^ ,

~ 2
where A is given by (1.3). The algorithm requires between n + 4n and
11 2 55 25

—7-^ H—T-n + — arithmetic operations and at most 2n comparisons. Here

an arithmetic operation is considered to be a floating point multipli

cation followed by an addition. Divisions are counted as multiplica

tions. The operation count compares favorably with the alternative of
computing A + azz and then factoring this matrix into MDM . This

1 2 1 2
would require -rn + n multiplications together with -rn additions to

form the new matrix. It would then require at most

1 3 ^ 3 2 . 1
6 4 3

operations to obtain the new decomposition. Therefore, a total of at

most

1 3 _̂ 5 2 ̂ 4
rn + Tti + -rn
6 4 3

operations would be needed.

Thus it is advantageous to use the updating algorithm whenever

n >̂ 10. However, it should be emphasized that the upper bound on the

number of operations required by the updating algorithm is a worst case

bound. Computational results indicate that the worst case seldom

occurs. Therefore, we expect that in practice the crossover number

would be much smaller.

2. Description of the Algorithm

We shall begin by describing a basic algorithm with no pivoting.

The algorithms given in [9,14] for the positive definite case will be

presented as modifications to this basic algorithm. The modifications

were designed to insure numerical stability. The algorithm we present

for the indefinite case is also a modification of this basic algorithm.

However, it is necessarily more complicated since the pivoting must be

updated.

Assume for the moment that no permutations were required to

obtain

A = MDM*̂

with M (block) unit lower triangular, and D block diagonal with one-by-

one or two-by-two diagonal blocks. Then we may write

A = I M D M ,
j=l ^ ̂ J

where the D. are the diagonal blocks of D and the M are the block

25

columns of M. Let

A = A + azz ,

and let Mp - z. Denote

where p = (P2̂ .P2 P^)

^""^ = I M,D M^, wOc) . f ^
J J J j=̂ k 3 3

Suppose that D E D.. + ap..p.. is non-singular, and let

~ ~ (2) t
D.b = apj. Then take M = M + w b., . Note that only the elements

below the identity part of M are altered;

Y
X

X

X

+
"o"
y
y
7.

M^ =

where the x's and y's denote possibly non-zero quantities. We have that

(2.1) A = M^(D^ + ap^pJ)Mj + a(M^p^w^^^^ + w^^^p^M^)

^ A(2) _L (2) (2)t + A^ ' + aw^ '̂ ŵ '

= (M^ + w^2^^)D^(M^ + w^^^bj)*"

/vr (2)t , (2) t„t.
a(M^p^w^ + w^ Pp^i)

(Mĵ D̂ b̂ ŵ ^̂ ^ + w^^^b^D^M^)

+ (a - bjD^b^)w(2)^(2)t

+ A
(2)

= M^D.M^ + A^2) + ,.,(2)^(2)t .

Observe that the matrix A^^^ + a'w^^^w^^^^ has the form

26

0

0

0

X

and thus we may recursively apply this procedure to obtain

as long as D = D + cr p p. is non-singular for 1 < j £ m. This assump

tion on D is theoretically always satisfied in the positive definite

case. However, this cannot be guaranteed in the indefinite case. After

establishing some preliminary results concerning these computations we

shall discuss some of the numerical algorithms that have been proposed

for the positive definite case.

Lemma (2.1). Let D and D + app be non-singular. Then the solution to

(1) (D + app)b = ap

is given by b = 60 p, where 9 = a/(l + op D p). Moreover,

(ii) det(D + app*̂) = det D(l + ap^T>~\) and the

updated a' = a - b Db

is given by

(iii) a' = . ^ t -1 • 1 + ap D p

Proof:

(i) follows by substitution,

(11) Sherman-Morrison formula (or direct computation),

(iii) follows by substitution.
D

Thus if all the D. (for 1 £ j ± m) are non-singular we have the formula

for 1 < j < m ,

and

' j + 1

' l

\

1

k
n

3=1
k

n

1

+ a

d e t

d e t

J .
-1

. P ^ D : ^ .

D.
3

>

D.

hence

3=1

^1 det A
a__,-, det A m+1

In the case that both A and A are positive definite, these formulas

point out the necessity of maintaining a. with the same sign as a. We

note also that we may recursively compute t. = a. as follows:

(2.2) t.-T = t. + P5DT''"P. ,

J+1 2 3 3 2

and we have the relation

t. ,., det D.
(2 3) 3+1 = 1
^^'^^ t. det D. •

3 3

When A is positive definite, d. = det D., d. = det D. and
3 3 3 3

D = diag(d ,...,d).

Now, often in practice one knows theoretically that the matrix A

should be positive definite when A is positive definite. In the case

that a is positive there is no difficulty since the recursion for the
~ *̂ -+l

t.'s yields an increasing sequence, and d. = —^— d,. Thus the d. are

all positive and d. ̂ d.. The following algorithm results for a > 0:

28

(2 .4) - 1 (1) t
' , w = z , A = MDM

f o r 1 = 1 s t e p 1 u n t i l n do

(1) P, '1 ^i

(2) t^^^ = t^ + p^/d^

(3) d^ = d,(t^^^/t,)

(4) terminate if i = n

(5) b, = (Pi/d,)/t^^^

(i+1)

(6) w(^^^) = w^^) - p^M^

(7) M^ = M^ + b^w

Note that the number of arithmetic operations required is n + 0(n),

since only i operations are needed at steps 6 and 7.

Difficulties arise when a < 0 because round off error may cause

a t to be positive, and hence d will be negative indicating that the

computed A is not positive definite.

Two remedies have been proposed. One of these [9] is to compute

the vector p such the Mp = z at the outset. It is noted that in the

application to quasi-Newton methods, the vector p is often available

anyway. If a < 0 then calculate the t., for 2 ̂ j ̂ n+1 from the formu

la (2.2). If one of the t. should tum out to be positive then the t.
J 3

are recalculated using

(2.5) "̂ n+1 = ^/^ '

t. = t ̂ ^ - Pj/dj, j=n,n-l,....1

where e is the relative machine precision. These new values of t are

then used in place of the old ones in (2.4), steps 3 through 7. The

-1 effect is to replace a by t~ which gives a problem that is close to the

original problem, and for which the computed A will be positive definite.

In [14] another approach is taken which yields a similar algo

rithm. The major differences being that t ., is set to e if some t. is

n+1 J

positive and a backwards recurrence formula is used to compute M. Thus,

in place of (2.4) steps 6 and 7, we would have

(n+1)
(2 .6) w = 0

for i = n step -1 u n t i l 1 do

(1+1)

(1) wf) = p.

(2) M. = M. + b.w
1 1 1

. - . (i) (i+1) ^
(3) w = w + p .

P.M.
*^i 1

However, there seems to be the need for additional storage in

(2.6). Note that the computation of w requires knowledge of M. which

has presumably been overwritten at step (2) of (2.6).

In [9] an error analysis of this process has been given. That

analysis shows that

MDM^ = A + zz*̂ + E ,

where the elements of E have first order terms in e which depend on the

ratio /cf./d, in (2.4) step 7 is used. However, it is possible to show

that

(2.7) M. = M.(d./d.) + b.w
1 1 1 i' 1

(i)

and here the error terms depend on the ratio /d./d[. which is less than 1

when a > 0. In both [9] and [14] one switches to (2.7) only if the

ratio /3./d. becomes larger than some bound.
1 1 "

This leads us to the following algorithm which is a slight

30

modification of the composite t-method given in [9]

(2.8) -1 (1) _ (1) terminate j ^ a = 0; put t = a""̂ and w^*' = z!

(2) if_ a > 0 ̂ ^ 6;

(3) J^ p is not available solve Mp = z for p;

(4) for 1=1,2,...,n do t^^, = t, + p /d.;
— 1+1 i "̂i i

if anj

begin

(5) ±f_ any t > 0 then

^+1 = ^/°'

for i=n,n-l,.,.,1 d£ t = t. . - p./d ;

end

(6) for 1 = 1 step 1 until n d£

(i) 2
ijf 0 > 0 then begin p = w^ ^ ; t. .. = t. + p./d; end;

e^ = t^^^/t^; ̂ . = d^e.;

terminate if 1 = n

b^ = (Pi/di)/t.+i;

if e. > 4 then

begin

^i = ^i/^+r

M. = Y.M. + b.w^^^;
1 ' 1 1 1

(i+1) (i) w = w - P.M.;

end

2lse

begin

(i+1) (i) „
w ^ = w^ ' - Pj,M̂ ;

M, = M. + b.w
i l l

(i+1)

end

The situation becomes completely different when the matrices A and A are

not assumed to be positive definite. In order to obtain a stable algo

rithm for solving Ax = b pivoting must be used to factor A [3,5] and we

obtain

QAQ^ = MDM^ .

Moreover, the following example shows that D. in (2.1) may be singular

even though both A and A are non-singular.

' 0 1 0 '

Let A = 1

0 0

0 0

1

(= MDM , where M = I and D = A),

let a = i, z = (1,-1,1)^.

Then D, =
0 1

1 0 •H-' [1,-1] =

i 1^
2 2
1 1
12 2 J

is singular but

A = A + azz satisfies det A = - —. Therefore, some pivoting strategy

must be employed to avoid the breakdown of the computation (2.1). The

main difficulty in updating the pivoting strategy is maintaining M in

triangular form.

We shall now describe the pivoting strategy given in [5] for the

Bunch-Parlett factorization in some detail. This strategy will be used

in a portion of the updating algorithm, so we include its description

for the sake of completeness.

Given a symmetric non-singular matrix A with elements a., the

factorization proceeds as follows:

Let 0 < a < 1 be fixed.

Let V = max a., and let y = max a
l<i<n 11 ±H 13

32

If \> >_a]x, let i be the smallest index such that |a | = v. Let Q^ be

the identity matrix with rows 1 and i interchanged. Then the matrix

Q^AQ^ has the element a^^ in the (1,1) position. The first step of the

factorization is to write

Q^AQ^ =

* t
^1 ^

V A'

1 0

v&^^ I

0

A -0 w

1 0^

Thus

\\<''T

where M.. =

^1

0

"1
0

A (2)

1 0

*-l T
v6 I

, .(2) ., .-1 t
, and A ' = A' - 6.. w . If V < ay, let i

indices such that ja . | = y. Let Q.. be the identity matrix with row i

interchanged with row 2 and row j interchanged with row 1. Then the

matrix Q^AQ has the element a in the (2,1) position. In this case

the first step of the factorization is to write

..t

Q^AQ^ =
V

I

A'

0

VD """ I

r

hi
0

•

A ' - V D " ^ VD,
-1

0

I

Here V is the first two columns of Q,AQ^ below the (2,1) and (2,2)

positions, and D is a two-by-two matrix. Also, det D. = a a.. -

2 2 2
a <_ (a -l)y < 0. Thus

M-^Q^AQJM-^ hi
0

•
0

A(2)
j

where M.. =

33

0 "

J\^ I
, and Â ^̂ = A'-VD^V.

The factorization now proceeds by applying the same pivoting strategy to

(2)
the reduced matrix A . The end result is that

\ ' \ \ - i \ - i • • • ̂ i'̂ î Q̂ î' • • • <-A-i<\' = °'
where D is a block diagonal matrix with 1x1 or 2x2 diagonal blocks.

Hence,

A = Q̂ M̂ Q̂ M̂ .. . Q̂ M̂ DM̂ Q̂ • • • M^Q^JQJ .

Since Q. = Q. for 1 <̂ i <̂ k we may write

QAQ2^2---\\=QX^2---\'

where Q^ = QiQ2---Qk»

and M. = QJ+IQ5+2- • ' ^ ^ j ^ ' ' '^^I'^i+l '

Then M. has the same form as M. and thus if we take
J J

M = M M . . .M,

then M is a block unit lower triangular matrix such that

QAQ*̂ = MDM*̂ .

For fixed a, 0 < a < 1, the strategy just described shall be

called the diagonal pivoting strategy S . When a is chosen to be

(l+yl7)/8, the factorization is almost as stable as Gaussian elimi

nation with complete pivoting [3,5]. A modification of this strategy,

which is comparable to Gaussian elimination with partial pivoting, is

1 3 3 2 1
given in [4] . The algorithm in [5] requires between -rr̂ "*" s'̂ ''"6'̂

and TH^ + ̂ ^ + ̂ comparisons, while the algorithm in [4] requires at

2 -, most n -1 comparisons.

Now, in order to establish the theorem that we shall use to

construct the algorithm for updating this factorization shall need some

preliminary lemmas.

Lemma (2.2). Let A e R be symmetric with eigenvalues X £ X <...<_ X

and let A = A + ozz for some z e R", a e R. If a > 0 then A has eigen

values X such that

X, < X < X < X„ < ... < X < X ,
1 — 1 — 2 — 2 — — n — n

while if a <̂ 0 then the eigenvalues of A can be arranged so that

X, < X, < X. < ... < X < X
1 — 1 — 2 — — n — n

Proof: [20] pp. 95-98. C

Remark: In particular if A is non-singular then at most one of the X.

is zero.

With Lemma (2.2) and the pivoting strategy just described we can

establish

Lemma (2.3) . Let V = L,) , where I e R^ and V e R . Suppose that

t £x£. k+£

D = D e R is non-singular and that w e R , a e R. Define

(2.9) C = VDV*̂ + aww*̂ .

Then there is an t^t permutation matrix Q such that

(2.10) (2 J) C (2 j) = VDV^ + /(v,w)B(v,w)^
\ ' \ / or

^ '\»'W

where

(1) D is a non-singular block diagonal matrix with 1x1 or 2x2

diagonal blocks,

(11) V is block unit lower trapezoidal,

35

fo^
(iii) V

(iv) w =

, V e R ,

0̂ , w e R , and
w

(v) B e R
2x2

Proof: Write

(2.11)

where

C = (V,w)
r D 0 ̂

0 a

0 1

V -w'
y

(V,w)'

D ys \(

w =
w.

w„

t 2
ys]i a

Ji

I 0

V - w'

\ t

, w^ e R , w' = w^-V'w^,

and

D = D + aw w.,

s = aw.

Here y may be any positive real number; if y is chosen small enough then

the diagonal pivoting strategy S will give either

(2.12)
Q 0

0 1

r D ys U Q*" 0 ̂

ys V o 0 1

M 0

yb*̂ 1

A r D 0 ^ r
2 ,

0 y a'

M 0 ̂ t

yb 1

or

36

M O O

m*̂ 1 0

yb 0 1 ^

D
0 0

0 0

0 0 6 yB

0 0 yg v^a'

M O O

m*̂ 1 0

[uh 0 1 J

where D is block diagonal with Ixl or 2x2 diagonal blocks, and M has the

corresponding block unit lower triangular structure. Since D is non-

singular. Lemma (2.2) implies that D has at most one zero eigenvalue.

The diagonal pivoting strategy preserves the inertia of D. Therefore, D

is non-singular. Note that 6 = 0 in (2.13) if and only if D is singular

and in this case we cannot carry the decomposition further without per

muting the last row and column of

" D ys "

t 2
ys y a)

If (2.12) is obtained then

Q 0

0 I

^ r qt 0 ̂

0 I

U qt Q 0

0 I

1 0

1

M

0 ^

IVQ*̂ - w'

^ M 0 •* C

t ,
yb }

Q 0

0 1

D 0

0 M'^O'

D ys

t 2
ys y 0

M 0

yb 0

r Q*̂ 0^

0 1

r ̂ t ^^ Q^ 0 ̂

I

V

0

1
— w
y

V'Q*̂ - w '
y

0 I

VM + w'b̂ i w

•>

I 0 "1 '' Q 0 '

V 0

D 0

0 a'

M I 0

t'
VM + w'b I w'

where

0 I V Q' v Q'̂ J

Here we t a k e

37

V =
M • \

VM + w'b*^
, and w = w'

I f (2 . 1 3) i s o b t a i n e d t h e n

Q 0 W Q'' 0 1
C

0 1 0 1

Q 0

0 I

U q t 0 ^

V'Q*^ - w '
• y

Q 0

0 1

D ys

t 2
y s \i a

t „ ^ Q^ 0

0 1

f ^ t 0

IV'Q^ - w ' J

' Q ^ O ^

0 I

I 0 0 1

V V i w'
y

M

• M 0 0 '

m 1 0

yb 0 1

I 0 I 0 1

0 0

° 0 0

0 0 6 ye

0 0 yg]i'^a'

0 0

VM + vm*̂ + w'b*^i V I w'
0

0

0

0

0

6

e

0

3

a'

M O O

m*̂ 1 0

[yb*- 0 1 J

M

f I 0 0 ^^

1 V V - w
^ 11

0 I 0

VM + vm + w ' b I V I w'_

where

Here

I 0 'I

V V

and we t a k e

V =

Q 0 ^

0 I V'Q*^ .

, where v e R ,

V =
M

VM + vm^ + w ' b ^
, B =

6 3 ^

3 a '
, w = w '

This gives the desired result,
D

Observe that the scale factor y does not actually enter into the

38

computations and thus explicit scaling need not be implemented in a

code. Also, we note that for the intended application, we will have

I <_ 3 in Lemma (2.3). When £ < 3 we have

C = (V,w)
' D 0]

0 a
(V,w)'

with D of order at most 3. Then in the computations non-singular

matrices of order at most 4 are inserted between the factors on the

right and permutations are used to obtain

' Q 0^

0 I

Q^o

0 I
= (vjv.w)

D 0

0 B
(v|v,w)^

Thus, some fixed number of arithmetic operations are required to compute

D and B. Also, some fixed multiple of k arithmetic operations are

required to compute V.

Before we give the main theorem of this section we shall need to

establish one more lemma. The proof of the lemma is trivial but it is

included for the sake of clarity in some of the following computations.

Lemma (2.4). Let B =
3 a

^ 1 -Y ̂
B =

-Y

Y 1

e R̂ '*̂ , where 3 ?« 0. Then

r x^ 0 u 1 y]

0 X
2) -Y 1

with |XJ > IX^I.

Proof: Let V-,tU^ be the eigenvalues of B with |y | >̂ |y2l- Since

3 ?* 0, B has an eigenvector corresponding to ŷ^ of the form (} . Thus

r 6

3

3]
a

r 1 1

Y
= ^1

r 1]

Y
>

39

Therefore,

we have

6+3Y = y-. -and since 3 ?̂ 0

Y = (M^-S)I^ .

Since B is symmetric it has an orthonormal system of eigen

vectors. Thus

B =

• l - Y ^

. Y 1 . . 0 X2.

' 1 Y '

.-Y 1 .

where X. = y./(l+Y), i=l,2.

The following theorem will show how Lemma (2.3) can be used to

D

obtain an 0(n) updating algorithm.

Theorem (2.1). Let A e R be non-singular with QAQ = MDM . Suppose

that z € R , a e R are such that

A = A + azz

.<t ~~~t
is also non-singular. Then QAQ = MDM can be computed from the factor-

2
ization of A in 0(n) arithmetic operations.

Proof: Let w = Qz. Then QAQ = MDM + aww . We denote

A ^^ = y M D.M^, A = y M.D.M^. First we may write
jti2 3 3 j=k 1 1 J

QAQ*" =
' I w^ 1

V w„

f D 0 If I w, 1

0 a V w 2 ;

+ A(2) =_ c(l) + A(2)

' 1 ^
with M = w =

w.

w 2 J

, D = D.. . Then by Lemma (2.3) we may

construct a permutation U, such that

40

(2.14)
U^O

0 I

• (1)
uJ 0

0 I

(i)

or

1 0 '

. ^1 ^ .
B
' 1 0 -

. ̂ 1 ̂ '.

= •'(il)

' 1 •

• V

(6)
' 1 •

• ^ 2 -

t

+

' 0 0 -

1 0

V, w'
*• 1 '

B

G O '

1 0

V w'
L ̂ 1 '* J

or

(ill)
• I '

• ^ •

Dl
J.

f >

I

• ^ -

t

+ a'
' o'

(O.w''̂) ,

'*' '̂ 2x 2 2x 9
where 6 ?* 0, D.. e R is non-singular, B e R , and a' e R. Observe

(2)
= A^ ^ If (iii) is achieved then the also that

problem bee

" i "

0 I

:omes

A(2)
\3^ 0

0 I

Q̂ AQ̂ , = A<1) + A(2) -, a-
' 0^

w

(O.w''̂) ,

where ^1 =
U^O

0 I
Q. Note that

A(2) . , A + a
' 0'

w

(O.w'^)

has the same form as the original problem but the dimension of the prob

lem is decreased to n-1 or n-2.

In the following discussion we shall drop the primes and sub

scripts from the expressions on the right of (2.14). Also, some of the

qualities appearing in (2.14) are redefined below.

If (1) holds in (2.14), then

41

Q^AQ^ =

while if (ii) holds then

1

v

0 •

w .

B
• 1

. V

0

w
+ A C2)

Let

0

I

V

Q^AQJ = A^^) +

= M . Then we may w r i t e

f

0

1

V

0

0

w .

B

f

0

1

. V

0

0

w

+ A
(2)

Q^AQJ; = ,

f (i) C (2) + A ^ 3) ^

or

(i i) A^^> + C^2) ^ ^(3)

In (i) we have

(2.15) ,(2)
1 0 0

^1 ^1 ^
V2 w^ V

B 0

0 D,

1 0 0

^1 ^1 ^

^2 ^2 ^

and a s i m i l a r express ion in (i i) . Here v = and w =
w.

,W2

have

been partitioned so that Vv- and Vw., are defined.

Now if (i) or (ii) occurred in (2.14) then

B =
6 3

3 a

satisfies |6| < a|3|. Hence by Lemma (2.4)

B =

' 1 - Y '

. Y 1 .

• x ^ o ^

. 0 X 2 ,

' 1 Y ^

.-Y 1 .

with |X I >. |X |. Moreover, X / 0 since X, = 0 implies that B = 0.

42

Let
w.

^1 "l

V2 w^
^1 "l

V2 W2

1 -y]

Y 1

Using this expression in (2.15) gives

(2.16) .(2)
w„

^1 ^ ^1
V2 V w^

0 I w_

w.
•^ 1

^2 ^ 1 - 2

0

0

D

0

0

D,

0

X,

0

0

x„

1

0

1

^1

^ 2

0 I w,

w.

' I " l
„ i

v V w
2 1 2

with D =
' 1 0 '

v, I
^ 1 •'

' X^ 0 "

• ° °2'

1 0 '

V, I

"̂ 1 '

non-singular and v^ = v -Vv . Now,

Lemma (2.3) may be applied to obtain

U
2

0 I

0 1
,(2)

Uj 0

0 I

I

V

I

V

/ 0 0

1 0

. ^1 * ' .

B

0 0 '

1 0

V- w

+ < or

^ 0 1

w
(O.w'̂)

We take B = D and M = Case (ii) of (2.14) is similar. This

process may be continued until the full updated factorization has been

attained.

2
To see that only 0(n) operations are needed, observe that a

small fixed number of arithmetic operations (bounded by b say) are re

quired to obtain a new diagonal block. Manipulating the columns of the

triangular matrix M at step k requires some fixed multiple of (n - k)

arithmetic operations (bounded by a say). Thus, there are at most

43

i(n + (n-1) +. . .+ 1) + bn = "̂̂ ""̂ ^̂ + bn

arithmetic operations required.
D

We remark now that the implementation does not actually rewrite

,(2)
as in (2.16). Instead, (2.15) is written as

(2.17)

where

,(2)
1 0 0

^1 ^ ^1
V2 V w^ .

6 0 3

0 D^ 0

3 0 a J

1 0 0

^1 ^ ^1
v^ V W2 ;

U

1 0

0 I

[v ^ V

0

0

^2-

• D b '

b'^a

1 0

0 I
rsj

l v 2 V

0

0
fsj

W2 J

D b

b^a

f 1 0 0

^1 ̂ ^1
0 0 1

6 0 3 "l

0 D2 0

3 0 a

r 1 0 0

^1 ^ ^1
0 0 1

Multiplying the matrix factors and then equating matrix elements

will show that D in (2.17) is equal to the matrix D appearing in ex

pression (2.11) of Lemina (2.3) if we had first obtained (2.16) and then

(2)
applied Lemma (2.3). After this form of C has been obtained, the

factorization may proceed as described in Lemma (2.3).

We are ready now to give an Algol-like description of the imple

mented algorithm. Some of the details have been left out for the sake

of simplicity. The most notable of these omissions is that when updat

ing a diagonal block D we may obtain two 1x1 blocks instead of a 2x2.

The explicit bookkeeping involved is not present in this somewhat

simplified description.

In the following description of the algorithm we shall make the

following conventions:

44

(1) The expression a : = b means b overwrites a.

(2) D will be a matrix of order at most 4. An expression of
' D 0 1

will mean we have Increased the the form D
0 0

size of D with elements defined as Indicated. Similar

remarks will apply to the arrays V and B.

(3) At step k, w will always have the form w =

0

w
]

w.

, where

w.. has 1 or 2 components whenever D is 1x1 or 2x2

respectively. Matrices Q and Q, are permutation matrices.

t r t
Let QAQ = 2. M.D.M., a, z be given. Let 0 < a < 1 be fixed. The

j=l J J J

following algorithm will compute M.D.M. and Q such that

Q(A + azz*̂)Q*̂ = I M.D.M^.
j=l 1 1 ̂

(1) begin

w : = Q z ; k : = l ; j : = 1 ;

D : =

r t
D.. + aw w^ aw

aw.

= M ; w : = w - M w.;

(2) Ll : comment decompose D as described in Lemma (2.3);

(3)

0

/>
D :

0 •

1
D

• < » •

0 1
M

D

0

—
= D ;

i f B i s 1x1 t h e n

hi ; g i n

,w) :
0

0 '

I
(.y ̂w)

0 '

B .
MS

r ^ t
^k

0

0 '

1
M;

a : = B; D, : = D;
k

45

I : = order of D ; k : = k + 1; j : = j + -C;

D : = D, + aŵ Wĵ

i£ (j = n and D is 1x1) or̂ (j = n - 1 and

1D2;LI°' ̂ maxdD^^l, ID22I)) then go to QUIT;

D aw.,
D

^

t
aw, a

w : = w - M^w^; V : = M^;

Update Q with Q ;

(4)

go t o L l ;

end ;

i f B i s 2x2 t h e n

b e g i n

(Mj^, V, w) : =
0

0 '

I
(V, w)

0

0

1
M;

D : = D; £ : = size(D); k : = k + l ; j : = j + £ ;
k ^

if i > n then begin D, : = B ; ££ to QUIT; end;

D

B
11

0 D.

0 B

11'

B,

k

0 B,

21

0

'21 " 22

(V, w) : = (V, Mĵ t w)

L w.

T-1 '̂ L -w,

0 1

; comment where (V, M,) -
• L ̂

D : =

go to Ll;

end

0 1

^L^ 0^

t ,
w.. 1

QUIT:

end.

46

We refer the reader now to the brief flow diagram (Al) describ

ing the pivoting strategy and to the program listing (A2) in the

appendix. The operation count that follows refers to that particular

implementation. The results of the operation count are given in Table 1.

By an Z-step reduction we shall mean that Z columns of M and

the corresponding diagonal blocks have been completely determined by the

algorithm we have just described. Operations at step k which are

2

carried out on columns of M or the vector w contribute to the 0(n) por

tion of the operation count and will be referred to as operations of

type-A. Operations needed to update a diagonal block will be called

operations of type-B and they contribute only to the linear term in our

operation count. We shall consider an operation as a multiplication and

an addition; with this convention we are ignoring the important contri-

2
bution of Interchanges to the 0(n) term. The paths cited refer to the

flow diagram (Al) in the appendix.

Table 1 needs some explanation. The counts given under the

heading "path 1" refer to a successful one-step reduction without enter

ing paths 2 or 3 (see Al). The operation counts given for paths 2 and 3

include those cases which begin with path 1 and end in paths 2 or 3.

type-A

type-B

comparisons

reduction

Table 1
Operations Required at Step k

Path 1

2(n-k)

5

1

1

Path 2

4(n - (k+D) < m <
fi(n - (k+D) + 1

15 1 m 1 19

4

2

10 (n -
IKn -

Path 3

(k+2)) + 2 <
('k+2U + 2

m £

42

6

3

m denotes number of operations.

47

The best possible situation occurs when Path 1 is taken at each step; we

then have that the total operations required are

n
S = I 2(n-j) + 5(n-l)

3=1

= 2 2l|zll + 5„

2
= n + 4n .

The worst possible case will now be considered.

Suppose

path 1 is taken for k = j, ,. . . ,j,
1 k̂

path 2 is taken for k = £.,,.. . ,£,
1 ^2

path 3 is taken for k = m ,. . . ,nL

where n = k.. + 2k + 3k .

2
The total number of operations contributing to the n term is

then bounded by the sum S, where

S E 2(n - j^ + n - J2 +...+ n - j^)

+ 6(n - (Z-^+l) + n - (̂ 2+1) +• • •+ n - (Z^ +1)) + k̂

+ ll(n - (m^+2) + n - (m2+2) +...+ n - (m^ +2)) + 2k2

= 3(n - j^ + n - J2 +...+ n - j^)

+ 3({n - Z^ + n - (̂ 3̂ +D} +...+ {n - Z^ + n - (Z^ +1)])

+ 3({n - m^ + n - (m̂ +̂l) + n - (m^+2)} +...

+ {n - m, + n - (m^ +1) + n - (m +2)}) - 2k - 7k
k̂ IC3 K3

+ 2(n - (m^+2) +...+ n - (m^ +2))

- (n - jĵ +. . .+ n - jĵ) .

48

Thus

Now,

and

S = I n2 - I n + 2k n - 2 f r, 4- ^1 j k „ - 2k - Ilk
i»l 1=1 ^

k_ k
2k n - 2 r m <_ 2k n - 2 ^ d + 3(1-1)) = k,(2n-3k) + k ,

1=1 -̂ i=l J J J

k n

1=1 -̂ j=n-k,+l ^ Z 1 2 1
•̂ 1

Thus

Sji|n^ -•|n + k3(2n-3k3-10) " J ̂ J + ̂ kj " 2k2

, 3 2 3 ^ 1/ rv2
— 2" " - y n + ^n-5)

11 2 29 ^ 25

where we have maximized the expression k (2n-3k_-10) over {k : k- ̂ 0}.

The analysis is not valid unless n >̂ 5.

Let us divide the counts for type-B operations by the corres

ponding reduction at step k. An upper bound for this number in the

worst case is 14. Thus 14n is an upper bound for the number of type-B

operations needed. Therefore, the worst case operation count is bounded

by

11 2 29 J. 25 ̂ 1,
-T- n - -;- n + -r- + 14n
6 6 3

11 2 ̂ 55 ^25

The maximum number of comparisons needed is 2n.

49

3. A Pictorial Description of the Algorithm

In the last section we gave a formal description and proof of

correctness of an algorithm to update the factorization of a symmetric

matrix. The main difficulty in obtaining this algorithm was updating

the pivoting strategy while maintaining the triangular structure of M

and M.

The following diagram represents the algorithm at step k.

(

'(k) ,(k) (k+D

Figure 1
Pivoting in the Updating Algorithm

^(k) In Fig. 1, A represents that portion of the factorization of

A obtained up to step k. C represents a working array that involves

»(k+l) .
information from the vector w and at most three columns of M. A is

that portion of the factorization of A which has not yet been con

sidered. From this diagram we see that the pivoting effects neither the

triangular structure of M that has already been computed nor the

triangular structure of that portion of M which has not yet been

50

considered.

One can also represent the operations on the elements in a dia

gram. In the following, d's will represent elements of the diagonal

blocks D of D, m's will represent elements of the M 's which occur
^ 3

below the block diagonal of Identity matrices in the matrix M, and w's

(k)
will represent elements of the vector w = Qz. Let a and A be as in

(k)
Section 2, and we assume that A is in factored form, so only the

lower triangle and diagonal D need be stored. A "~" over an element

means that some operation has altered this element. If a 0 appears then

that element has been "zeroed out" and is not subject to further

alteration.

Only those elements that need to be stored are represented; the

elements known by definition are left blank; we store the diagonal

matrix D in place of the identity matrices in M. Row permutations are

denoted by (̂ . or —>• ; column permutations are denoted by _) _I_ •

The permutation matrices Q are not explicitly represented.

We shall illustrate the algorithm with a 5x5 example.

Case 1:

Dĵ is 1x1,

(1)

A =

r
d

m

m

m

m

'

A(2) + a

w

w

w

w

51

D is computed and found to satisfy the pivoting criteria,

(2)

A =

m

m

m

m

,(2) + a

w

w

w

w

Case 2:

D, is 2x2,

(D

A =

d

d

m

m

m

\

\
m

m

m

A«>

+ a

0

0

w

w

w

D^ has been computed and does not satisfy the criteria for a 2x2 pivot.

(2) Compute QnO-iQi" = M
D^O

0 d
M \ (M^,V) =

Q-L 0

0 I
M Q5M

r
f Ql 0]

0 I

Q' ol

0 1

m

m

m

M

m

m

m

,(2)

+ a

0

0

w

w

w

We are finished with D.. and are ready to apply the algorithm to the

diagonal element in the second position.

52

Case 3:

)ĵ is 1x1 and does not satisfy the pivoting criteria with D- also 1x1.

(1)

A =

d '

m

m

m

m

\

K
m

m

m

(3)

+ a

w

w

w

w

(2) Compute (M^, M2) = (M^, M2)M, M
f D^ 0 ̂

0 D,
M^

A =

d

d

m

m

m

\

3\
m

m

m

A(^>

+ a

0

0

w

w

w
V I

(3) Apply Case 2.

Case 4;

D, is 1x1 and does not satisfy the pivoting criteria, and D_ is 2x2.

(D

A =

m

m

m

m

d ^

d

m

m

\
d \

m

m
A<3)

+ a

w

w

w

53

(2) Compute (M^, M2) = (M^, M2)L, L
D^O

0 D,

A =

d

d

d

m

m

d

d

m

m

\

X
d

m

m
A(^

+ a

0

0

0

w

w

(3) Compute Q M such that Q.DQ^ = M
D^O

M^
0 D̂ j

In (3) the diagonal pivoting strategy could have produced

several different block structures for D and D depending

on the matrix D. We only show the case D, is 2x2 and D„ is

1x1.

(\ !

0

0

+ a 0

f Q , 0 -

0 I
A

r t >
Q, 0

[0 I J

J->-

~»-

M -

d

d
t.u

m

m

m
I t

d
f.^

m

m

m
t

d

m

m
i

'

A<3)

<

w

w

(4) We are finished with D.. and are ready to apply the algo

rithm to the diagonal element in the third position.

54

55

Chapter III

Error Analysis of the Updating Algorithm

1. Introduction

We have updated the symmetric indefinite factorization of

(1.1) A = A + azz*̂

in order to solve the linear system

(1.2) Ax = b .

A method for solving (1.2) is considered to be stable if the computed

result X satisfies
c

(1.3) (A+E)x = b

where ||E|| is small compared to ||A||. (|| • || is the matrix norm induced by

a vector norm on R which we also denote by ||'||.)

The following analysis is influenced by the error analysis of

the diagonal pivoting method given by Bunch [3]. The solution to (1.2)

is given in four steps:

(1.4) (1) A = MDM (update the decomposition),

(11) Mc = b (find the new right-hand side c),

(111) Dy = c (solve the 1x1 and 2x2 systems),

(iv) M X = y (obtain the final solution x).

We have presented an algorithm that is algebraically correct for

obtaining (1). There are standard methods for solving (11), (Hi), and

(iv). However, in finite precision arithmetic error is introduced at

each of the steps (1) - (iv).

56

Instead of obtaining the exact decomposition of A, we actually

obtain M = (M+AM) , and D = (D+AD) such that MDM = QAQ + S. Then when

equations (11), (ill), and (iv) in (1.4) are solved, the errors SM^,

6D, 6M2 are Introduced at steps (11), (111), and (iv), respectively.

Thus, we actually compute M, D, c, y, x such that

^ ̂ ^ . .

(1.5) (1) MDM = Q(A+azz)q + S,

(11) (M+6Mi)c = b,

(ill) (D+6D)y = c,

(iv) (M+6M2)x = y.

Now, M and D are the exact factors of A. Therefore, steps (i) -

(iv) give the exact solution to the system (A+F)x = b, where

(1.6) F = (AM+ M^)[D + (A5+6D)][M + (AMf6M J]*^

+ M(AD+6D) [M + (AMfaM2)]*̂

+ iS(AM+6M p*^ + S.

2 k In this chapter if x = a., e + a„e +. . .+ a,e , where a.. ^ 0, then

we write x = 0(e) and say x is of order e as e ->- 0. If B is an n^n

matrix with elements b.., then we shall denote B = 0(e)B if
ij

b.. = b..(t), .(e), where <t). . (e) = 0(e). In the following analysis we

shall obtain expressions of the form

(1.7) (1) (AM+6M^) = 0(e)M+G(E),

(11) (AD+6D) = 0(e)D + H(e),

(ill) (AM+6M2)^ = 0(e)M*̂ + G(e).

Using (1.7) in (1.6) gives

57

(1.8) F = (O(e)M + G(e))[D + 0(e)D][M + 0(e)M^ + G(e)]^

+ M(0(e)D)[M + 0(e)M + G(e)]*^

+ MD(0(e)M + G(e))^ + MH(e)M'̂ + S

= 0(e)MDM^ + G(e)DM*̂

+ M(0(e)D)M'̂

+ Ml(0(e)M^) + wi[G(e)]*^ + MH(e)M^

+ 0(e^)B + S.

2
The 0(e)B term in (1.8) is negligible when compared to the

dominant first order terms. The combined terms give

F = 0(e)MDM^ + 0(e^)B + S,

if G(e) = 0(e)M, H(e) = 0(e)D, and S = 0(e)A. Then

(1.9) %^=0(e);

II All

hence the method is stable.

However, we shall also see that the terms S, G, and E will in

volve products of the entries of solutions to triangular systems

involving the original factor M. Thus if M is ill-conditioned,

(||M|| ||M II is large compared to the nimiber of significant digits avail

able in our finite precision arithmetic) then the updating procedure

cannot guarantee that the constant in the 0(e) term in (1.9) is of

moderate size.

2. A Detailed Description of the Updating Algorithm

We shall now give a detailed floating point analysis of the

computations performed in our updating algorithm. There are two parts

to a step of the algorithm. An intermediate step of the algorithm

58

results in a sum of matrices of the form

(2.D Q X = A(^-^> + Cĵ + Â *̂ -̂)̂ .

with

: (k - i) = T M^B.MJ, A^^^^) = I M.D.M^
j=l ^ ̂ J j=k+£ J J ̂

where £ is 1 or 2. Let w •'̂ = 1

and
w

0

(j+1)

w
(j)

m
for 1 < j < m, where w = 7 M.w,

— — _̂-i 3 1
(j)

w

0

(j)

3=1^

M.w:
J 1

Part 1 of a step consists in preparing the matrix C for part 2.

This Involves possibly bringing the term ^./D. ./M^./ into the matrix C

and performing certain operations on the factors of C to obtain a

special form. Part 2 consists in permuting certain columns and elements

of the factors of C and obtaining the updated M^ and D, .

We shall now describe an intermediate step in detail.

Part 1.

The previous steps of the algorithm have resulted in

t

(a) C,=

0 0

0

^(k) ^(k+1)

6 3

3 a

with |6| < a|3|, or in

(b) C^ =
0

(k)
w

[o][0, w^^^^]

0 0

0

^(k) ^(k+1)

We shall now drop the superscripts. If (a) holds then we replace C, by

59

^k =

• 0 1

^ l\+l
V 1

0

0

w

6 0

0 D 0
k+1

3 0 a

0

1 \ . +1

0

0

w

0 0 0

1 0 0

V, I w.

V2 M' w^

where we have partitioned

0

0 \+l 0

3 0

V =

v^
w =

w.

w„

We then compute

(2.2) \ =

0

1

0

0

0

I

0

0

0

\ -+1

V -M'v M' w -M'w^

(D)

0 0 0

1 0 0

- 1 ^

0

0

I

M'

w.

-2 ^' "2

0

1

0

0

0

I

0

0

0

v„-M'v, M' w„-M'w,

where

6vJ + 3w^

t t t t
V 6 + w^3 'D,.-, + '5v,v + 3(ViWi+WiV^) + aw^w^ v^e^ + w^a

3 3v- + aw..

Now we proceed to part 2,

If (b) holds then we replace C, by

60

I w

0 0

1 w^

M' w„

0

0

0

a

0 '

a

f

0

I

M'

1 0]
1
1 wj
0

^ 1

Wo .

where we have p a r t i t i o n e d

w =

r 1 w. 1

w„
>. 2 '

' \ =

0

I

M'

We then compute

(2.3) ^k =

0

I

0

0

M' w„-M'w,
z 1'

D, + aw.w, aw,
k 1 1 1

aw.

and proceed to part 2,

Part 2,

0

I

0

0

U

M' w^-M'w,
z. 1-

Part 1 has resulted in a matrix of the form

t

(2.4) Ck =

0 0

1 0

V w

b'̂ a

0 0

1 0

V w

where D is a symmetric matrix of order at most 3. We then apply pivot

ing strategy S only to the matrix D producing a permutation matrix Q,

and a 1x1 or a 2x2 matrix D such that

Ck =

I

0

0

0

Q

0

0

0

I

^k

I

0

0

0

Q

0

0

0

I

61

is given by one of the following forms:

(a) D" = (6) is 1x1, b = (3), and |6| >_ a|3| .

(2.5) ^k =

<' 0 0

1 0

v+w(3/6) w

6 0

0 a

with a = a-3 IS. We then take D = (6), M,

replaced with a. Return to part 1.

0 0

1 0

v+w(3/6) w

0

1

v+w(3/6).

, and a i s

(b) QDQ̂ = 11 21

^21 ^22

, b^ = (3^,32) , hj^il L l<522l' ^"'^

h n l L « | S , i l - Then 11

(2 .6)

where

2 1 '

\ = \
'hi ''

0 B
<-

B =
^ ^22 " '^21^^11

h - ^^1^21>/^11

'2 - (^1^21>/^11

a - ^j^l^ii

L, =

0

1

^21/^11

v^ + V2(62 i /6 i i) + w (3 i / 6 i ,)

1 0

1 0

1 1

' ^2

0 "

0

0

w

and we have partitioned V = (v,,v). We then take

62

\ = («11>'\=

0

1

^21/^11

, and

•^1 "̂ ''2^^2i/'^ii^ "̂ ^(^i^^iin

t

'k+1

0

0

1

^2

0

0

0

w

[B]
0

0

1

- ^ 2

0

0

0

w

Return to part 1.

(c) D =

(2.7)

"̂ 11 ^21

^ «21 ^22

and max(|6^l| , |<522l) *= °'l'52il-

Ck =

0

I

0

0

V + wb D w

0 a - h^B'H

0

1

0

0

V + wb D w

We then take

\ = °' \

and replace a by a - b D b.

0

I

t—-1
V + wb D

(d) QDQ" =

1̂1 2̂1 Si

21

31

, 6..., is the pivot choice when

S^ is applied to D, \6^.^\ >_a\6^^\ for 1=2,3; and b = (3j^,b2).

63

(2 .8) Ck =

0

1

'll^hl

Sl/^11

0 0 0

0 0 0

1 0 0

0 1 0

V2 V3 w

S i 0 °
0 D2 b2

" t ~
. 0 b^ a

0

1

Sl^Sl

Sl^Sl

where v^ = v^ + V2(621/611) + V 3 (6 3 i / 6 i i) + w (3 i / 6 i i) .

0 0 0

0 0 0

1 0 0

0 1 0

V2 V3 w J

«2 = ^2 - 6
11

21

Ŝl
(621 , 631) ,

2̂ = 2̂ - (VSl>^Sl' Sl^ '

a = a - 3 i / 6 i i ,

and we have partitioned V = (Vi,V2,V3) .

We then take

\ - ^hl>'\

0 ^

1

Sl^Sl

Sl^Sl

and

^k+1

f

0

0

1

0

. ^ 1

0

0

0

1

^2

0 ^

0

0

0

w
J

' \

\~A
\ '

'^ .

• 0

0

1

0

> ^ i

0

0

0

1

^2

0

0

0

0

w

64

We now bypass part 1 .since C, .. is already in the proper form needed to

apply part 2.

6,

(e) QDQ*' =

31

32

Si S2 S3

; S applied to D resulted in

the choice of a 2x2 pivot D̂ ;̂ |det D | >_ (1-a) (max| d. . |) , and

b*" = (bi,32)

(2.9) C^ =

0

I

0 0

0 0

1 0

V, + V d + wb.. V w

°1 0

0 B

0

I

0 0

0 0

1 0

V + V d + wbi v^ w

where

d*" = (63^, 632)01^ .

rt , t—-1
bl = b^D^ ,

S3 - ̂ Sl' S2)^'
Sl^

V i l l 32

s - V̂

s - ̂ 1̂"'
31

^S2^

31

32

a - b..D.. b..

and we have partitlcned V = (V.. , v)

We then take

°k=^' \

V^ + V2d'̂ + wb^

and

65

'k+1

0

0

1

^2

0

0

0

w

(B)
0

0

1

^2

0

0

0

w

Return to part 1.

3, Floating Point Analysis

Now that we have a detailed description of the numerical opera

tions performed, we are ready to examine the error Introduced when these

operations are carried out in finite precision floating point arith

metic. We shall work in base 3j t-dlgit floating point arithmetic. We

call e E — g the basic machine unit. Let

F£(3,t) = { 6 : 6 = ±3 I Y.3
[3=1 ̂

-3 , 0 1 Yj 1 (3-1) .

each 6. an integer,

1 £ YT £ (3-1), k any integer},

We then have [10]

f£(e^*02) = (6^*62) d+e') ,

where |e'| <_ e, whenever Q-,,^^ e F£(3,t) are floating point numbers, and

* is one of the operations {+, -, *, /}, and f£(e^*62) is the nearest

number in F£(3,t) to the real number ^-,*^2' ^^ shall also write f£(B)

to denote the computed elements of the matrix (or vector) B.

(k)
Lemma (3.1). Consider the vector v defined in part 1(a) of section 2,

Then the components v. of v satisfy

66

where

(3.1)

a(vj">) = v^^) + tj^>(e) ,

IxJ^^e)! < (3+e)e(i-Dinax|v,^'^^|
^ ~ Z<k i

,(k) Proof. The vector v "̂ is the vector v appearing in one and only one

of the expressions (2.6) or (2.9) at step k-1. The vector v In (2.6)

or (2.9) is one of the columns of the matrix V in the expression (2.4).

Since V in (2.4) is given by (2.2) or by (2.3), we see that

(3.2)

where
(n 1

Jk-1) ̂

V = (v̂ *" ̂ ^ - M'v̂ '' ̂ S or V = M',

0

I

M'

\ +1' and 1
(k-1)

= v̂ *̂ -̂ ^

.(k) If V is defined as a column of M, then no error is intro

duced. However, if

(3.3) (k) ̂ (k-D _ „,̂ (k-l)
2 1

.(J) then let j be the largest index less than k for which v was defined

by a column of M. Then

(3.4)
0 ^

.(k)

where we have partitioned v

0 \

I M vJ (£-1)

1
.U)

(Z-1) so that M^v^ makes sense. The

formula (3.4) can be derived from (3.3) using an inductive argument. We

recognize (3.4) as the process we would use to solve the linear system

67

(3.5) Mx =
0 '

where v is the result of the k step of that process. Then it has

been shown [6] that

where

(3.6)

f£(vf>)=vf> + xf>(e) .

1x̂ ^̂ (6)1 £ (3+e)e(i-l) max |v̂ '̂ |̂
Jl£<k ^

THe bound (3.1) follows from (3.6), but is not as good as (3.6); however,

(3.6) cannot be obtained without prior knowledge of the index j.
D

M) ,-. We shall comment now on the growth of the v. in (3.4). Let us

consider equation (3.5) further. Since v -* is defined by that portion

of some column of M (say column 1) which lies below the main diagonal,

we may write (3.5) as

Mx = Me. - e.
1 1

rO if j ?« 1
where e. is the basis vector defined by (e.). = {, .̂ .

1 i j ' - l i f j = i
Thus

M(x-e.) = -e.

-1 Therefore, the solution e. - x is a column of M . This shows that the
1

(P) -1
v^ in (3.4) are in fact composed of elements of M . We now observe

(Z) that undue growth in the v^ in (3.4) indicates severe ill-conditioning

of the matrix M with respect to solving linear equations.

(k)
Leimna (3.2). Consider the computed quantities fZiw,). Then if

fa(w^^Sl

fi(wJ"'S

68

we have the p satisfies the equation

(M+-T)p = w ,

where the elements x of T satisfy

h^jl 1 (n+DY|m^^|e

Here, y is a constant of order unity and the m . are the elements of M.

Proof: One observes that the ŵ -̂ are computed from the standard back

substitution algorithm. The result then follows from [20].
D

Let us drop the f£-notation and hereafter regard the quantities

w as computed quantities. Then Lemma (3.2) shows that we may write

(3.7) MDM^ + aww*̂ = M [D + a

w
(D̂

w
(m)

[w(^>...w}'">])M^

+ a (T
w
(D̂

w
(m)

+ oT

w

1

(D̂

w + w[w (1) „ w l ^ t w^^lT^)

w
(m)
1 J

tw<»...w<°"lT'

(k)
Thus we shall now regard the vectors w as exact quantities. The

error introduced from the computation of these quantities in finite

precision is expressed in the error matrix

S = ajlpw*^ + wp^T*^ + TPP'^T'^} .

(k) (k)
Lemma (3.3). Let v. denote a component of v..

(k) (k)
equation (3.2).) Let o)̂ denote a component of w^

(See Lemma (3,1),

Then the floating

point computation of D results in

69

f£(D) = D + E ,

where E is a block diagonal matrix with the same structure as that of

D. Moreover, the 2x2 blocks of f£(D) satisfy

a | 6 (f | > m a x (| 6 (f 6 $ ^ > |) , where 5 =
22

rr(k) ~(k)
Si Si
7(k) ^(k)
Si S2

and the elements e., of E satisfy
13 '

(3.8)

where

|e. . I < Ce ,
' ij ' —

.(k)^2 (k)..(k) .(k)^2|
0 < C <max(|6..U a| 3^(v^'^^)1 , 2| 3̂ v̂ '̂ â,j'̂ ^ | . |â (cô *̂)̂̂ |) 49

ijk

th
(Here a is "a" at the k step, and 3, is the "3" appearing in part 1

at the k step.)

Proof: From equations (2.2) and (2.3) we see that the updated diagonal

blocks D, are obtained by decomposing matrices of the form

^1 =

6v^ + 3wi

t t t t
V 6 + w 3 D - + SVĵ Vi + 3(v Wi + WiV) + aWiWi Vĵ 3 + aw^

3 o t . t
3vi + awi

with |6| < a|3| if equation (2,2) was used, or

s =
D, + aWiWi aw.
k 1 1 1

aw.

if equation (2.3) was used. Here the v's, w's, g, 6, o are the pre

viously computed quantities at step k; we have left off the

superscripts.

70

Then

f£(D^) = D^ + E^, {Z is 1 or 2) ,

where a typical (i,j) element of f£(Di) is of the form

{[6^j + 6v^v^(l+ej^)(l+e2)](l+e3) + 23v̂ a>. (1+e^) (1+63)

}(l+e^) + aa)^a)^(l+e^)(l+eg)

= 6^j(l+e3)(l+e^)(l+eg) + 6v^v^(1+e^)(l+e^)(l+e3)(1+e^)(l+e^)

(I+E9)

+ 2ev^a)j(l+e^)(l+e3)(l+eg)(l+eg) + aoĵ o)̂ (1+e^) (l+Cg) (l+e^) ,

where e. < e.
3 -

Now, if re < 0.1 and |p| < e, then (l+p)'^ = 1 + rp', where

|p'I < 1.06e [19, ex. 4, p. 80], and if jp | ,.. ., |p \ ± z then

(1+p^) ... (1+Pj.) = 1 + rp ,

where |p| < 1.06e. Thus we see that if the elements of D» are denoted

(£) (£)
by 6 . . and the elements of £» a re denoted by e . . then

i l I I3

^Ij^ + eJJ^ = 6^^(l+3Pi) + Sv^Vjd+Spp +

+ 23v^a).(l+4p3) + ato.o). (l+3p^) ,

where | p . | < 1.06e for j = 1 ,2 ,3 ,4 , and | 6 | < o | 3 | . Hence,

U i j I l i n a x (| 6 | , a|3v^v | , 21 ev^oo | , |aa)_ ĉo. |)15(1 .06)e .

Maximizing the q u a n t i t i e s which appear in t h i s express ion gives the

bound

(3.9) | e [^ ^ | l m a x (| 6 ^ . | , | a 3 ^ [v ^ ^ S \ . 2 | 3 ^ v f 0̂)̂ *̂̂ ^ I , | aj^(J ' ^)) ' |) 15.9e
i j k -J

The case we have examined is clearly the worst case for the type

of analysis we have carried out. Thus we take (3.9) as our bound for

71

the elements of E , (Z = 1,2).

The next step in obtaining D, is given by decomposing D. or D

according to one of the equations (2.5)-(2.9). Let us refer now to the

proof of Lemma (2.3) of Chapter II. Specifically we consider the decom

position given in equation (2.12) of Chapter II. There it was shown

that a scale factor y may be implicitly introduced in the last row and

column of D or D . This factor has no consequence on the final result.

However, when D or D is suitably scaled in this way then pivoting

strategy S does not choose any of the elements in the last row or

column as pivot elements. We then obtain a computed factorization.

yv ^ A ^

MDM =
Q 0 ^

(D. + E.)
1 1

Q 0 '

0 1 Q 1 ^ - . , 1
+ F. (1 = 1 or 2).

The analysis given in [3] applied to this (at most) 4x4 case shows that

(£)
the elements f.. of F„ satisfy

±2 <•

(3.10) \f^.9\ < max|6^'f^|(34e).
' 13 ' - ij 13

Now (3.10) together with (3.9) give the bound in (3.8). g

We have given an analysis of all of the operations in part 1 and

of the formation of D. We now turn to an analysis of the final forma

tion of the elements of M. We begin with

Lemma (3.4). Let m.. be the 1j element of M with i > j. Then

(3.11) f£(S^j) = m^j + m̂ ĵ i-jCe) + ^ij(E) '

where

and

|y^.(e)| <_ e(3+e) ,

72

|v.,(e)| < max|v̂ '̂'̂ |(e(3 + max[^, - ^ —]) + 0(e^)) •
ij ik a' 1 - a

Proof: We shall give a detailed analysis of the operations used in

forming M. These operations are described in part 2 a-e. We shall have

to examine each case separately. Cases a-e below refer to the opera

tions performed in part 2 a-e, respectively. The errors resulting from

computing the quantities 3/6, b D have been accounted for in Lemma

(3.3). Therefore, we shall assume here that we have these quantities

exactly.

Case a: The vector M, is computed by

0

fU\) =

f£(v^^^ + ŵ *''̂ \̂3/6))

Now,

fZiv^^^ + a)̂ '̂̂ \̂3/6)) =

= (vj*"̂ + [cu^^^(3/6)](l+e^))(l+e2)

= [v̂ ^̂ + (o^^^3/6)](l+e2) + a)^^\3/6)(e^+e^e2)

= ̂ k-^"'ik 2-^-1 ^3/6)(e^+e^e2)

^Ik "̂ ̂ ik^2 ̂ ^^r^ "̂ (o^^^(3/6))(e^+e^e2)

(k)x J. , - v^ '(e^+eie^)

~ ~ (k)
= "ik + ^k^h"'^2"'"l"2^ - \ <^i+ei£2> •

73

Case b : M, i s computed by

fl(\)

0

1

Si/Si
(k+1)

.f£(Vi + V2(62 i /6 i i) + w ^ " " " ^ 3 i / 6 i i)) J

Let V. have components v . . , j = 1,2.
3 13

Now,

f£(m.^) = f £ (v . i + v , 2 (6 2 i / 6 i i) + o.^^^^\^^l^^,,))

{ [v , i + v . 2 (6 2 1 / 6 1 1) (1 + ^ 1) 1 (1 + ^ 2)

+ 4 ^ " ^ ^ ^ 3 i / 6 i i) (1+^3)} (1+^4)

[v ^ l d + e ^) + v^2(Sl/Sl^^^"^^l '^^2"'^l '^2>

+ a) J ' ' ' ' ^ \ 3 i / 6 i i) (1+^3)] (1+^4)

= m,, + m., c, i k ik 4

+ (l+e^) [v^ ie2 + Vi2(«2l/SP^^l '^^2"^^1^2^

+ a)^''"^^^(3l/6^l)e3]

= ""ik "̂ " ' ik^4

,(k+l)
+ (l+B4)[(Vii + V i 2 (S l / S l) ^ " i ^ S / S P) ^ 3

+ Vii(e2-e3) + v^^^S 1/611) (ei+e2-^3'-^l'2^ ^

^ k -̂ ^k^^3-'2"4' ' '3 '4^ •" ^il^"2-^3'*'"4^"2-^3>>

+ v.2(62i/6ii)(ei+e2-e3+^i^2^(l+^4> '

74

Case c: M^ is computed by

f'e(M^) =

0

I

fZ[(.^,v^) +w(^+l>b\^].

Let b'̂D̂-'- = (3i,32)- Then

fl(\y.) = (f-̂ (Vii + a)̂ "̂̂ ^̂ 3i), f£(v^2 + 4^"*"^^^^^ •

Each of the components falls under the same analysis as case a. We

obtain

f£(S..) = m.. + S^j(ei+e2+eie2) - v,i(ei+eie2)

and

f£(m. .̂)̂ = m^.^^ + ̂ j+i(ei+e^+.;.') - -^2^-[^-[^!p ,

where M.^ = (m^., m^^^^).

Case d: M^ is computed by

So

fZi\)

0

1

Si^Si
Si^Si

(k+2)
l.f£(vi + V2(62i/6ii) + V3(63i/6^i) + w^""^^^3i/6^i))J

(k+2) f£(m ĵ̂) = f£(v.^ + v.2(62i/6^i) + v^3(62i/6^i) + coi'^^^^3i/6^i))

{[vii + Vi2^'52i/6ii)(l+ei)](l+e2)

+ Vi3(63i/6ii)(l+e3)}(l+e4) + 4^"^^^Bi/6^i) (l+e3) (1+e^)

75

(k+2) ,
= {v. i + V.2(621/611) + Vi3(631/6^1) + . - ^^(3i /6 i i)

+ v.i(e2+e4+e2e4) + V i 2 (S l / S l ^ ^"l"^"2'^"4+'l'2

''"^4^^l"'"^2''"^1^2^^

(k+2)
+ V-3(631/6^1) (e3+e^+e3e^) + .[^ 'U^^l6^^)e^}a+e,)

\ k ^ "'ik^6 + ^lf^2-*-"4"'"6'""2"4-'^6^^2''"4"'^2"4^1

[ei+e2+e4+e^+eie2+e4(ei+e2+Eie2^ + ^12

f6 1 21

11

+eg(ei+e2+e4+eie2+e4(^l+^2'^^1^2^^1

-^^13

f63il

Ŝl

+ 0)
(k+2)

[e3+e^+eg+e3e^+e^(e2+e4+e3e4)]

(e3+e^+e5eg)
d l

= ^ k -̂ "'ik^6 -̂ (^5- 'V^5^6^f^ i l ' ' " i2
[Sil
UiiJ + ^ 3

Si
IsJ

+ U)
(k+2) \ '

IV

+ v.i[e2+e4-e3+e2^3-^5^6"^("^ ^

+ V

+ V.3

'6 1
21

6 i i ^ 11-'
f6 1

31

IS J

[e^+e2+e4-e3+eie2-E3e6+e^(ei+e2+eie2)+0(e)]

[^3-'^4-^5-'^3"4-^5"6+°^"^^^ '

Case e: M. i s computed by

fZ{\) =

0

I

(631,632)5;^

^ [(Vi .v^) + V3(63i,632)D-' + w^^-^'^^i, 32>\^^i

76

where we have partitioned V = (v ,v ,v), b' = (3,,32.33). Thus if we

let (631,632) = (̂ 3i''S32)D~̂ . (3i,32) = (^i'^2^\^ ^^ ^^^ quantities

computed in (2.9), we have

f£(M̂)̂ = (f£(v̂ i + v̂ 363̂ + J^'^^\), f£(v̂ 2 ̂^ ̂ i3S2 "̂ '^^i^^^\)y

Then the components of M^ fall under the same analysis as case b.

We have shown that if m.. is computed from the formulas given in
ij

part 2 a, b, c, d, and e using the computed quantities from part 1 and

from the formation of D, then

f£(S..) =-ij+^jyij(e) +v..(e) .

1 (k) I Define v = max v. . Then taking absolute value, using the triangle
l,k ^

inequality, and recalling that |e | ̂ e gives

|yi-j(e)| 1 e(3+e) ,

and

ve(l+e) in case a,

6,
v(3e(l + 21

dl
) + 0(e)) in case b.

|vj.(e)| ̂ <ve(l+e) in case c.

v(e(3 + 4
Si
Si

+ 3 Si
Si

) + 0(E)) in case d.

v(3e(l +max(|63^|, I632I) + 0(e)) in case e.

By the properties of pivoting strategy S we have that

Si
Si

>
Si
Si

< ̂ , and max(|63i|, | 6 3 2 |) ^ i - ^

77

Thus,

|v^j(e)| 1 v(e(3 + max[^, 3 7 ^]) + 0(eh)

in all cases.
D

We now return to equations (1.5). Regarding (1.5)(1) we have

shown that AM.. = M..y..(e) + v..(e), with bounds for y..(e) and v..(e)
ij ij^ij 13 13 13

given in Lemma (3.4). We also have that AD = E in Lemma (3.3) is block

diagonal with the same block structure as D. Using the analysis given

in [3, p. 667] we see that in (1.5)(i) and (iv) that

'S^ijl' |6iMij| i f e[l + 0(e)](n-2+l-j)|M^j| ,

and in (1.5)(iii) we have

|6D..| < |D..|e
' 11' — ' 11'

if D . is a one-by-one block; otherwise, from [3]
11

6D..
' 11'

(6D). 1,1+1'

lK^°)i,i+il l('5°>i+i,i+ilJ
< e[l+0(e)]|D^^^^J

a 1

1 a

Finally, we have that the error matrix S, defined in Lemma (3.2)

and discussed in the remarks following it, is bounded by

l |s |Ll{2||T| |J|p| |J |wL + ||T||f||p||2}|a|

Ji {2n(n+l)Y max|m^j|max|w^ I IMLe

+ e^[n(n+D]Vinax|w^''^|^}|a| ,

where y is the constant appearing in Lemma (3.2). The matrix G(e) in

(1.7) (i) and (iii) is given by G = (v_(e)). (Note that G is lower

triangular.)

We have the bound for F given by

78

(3.12) ||F||̂ 1 2 max|v[^^|e(3 + max(^, Y^'^^W^^^L
1, k

+ 2max(|D^j|. a| e^(vj'^>)2| . 2| B̂ v̂ ^̂ a,̂ *̂ ^

|a^(4^S2|)49e|^||J|Sl„

+ e[l + 0(e)]||MDM̂ ||„ + ||s||̂ + 0(e^ .

We have already mentioned that the |v, | and |aj |, and |s|^

may grow with n for ill-conditioned matrices M. However, the computa

tional evidence indicates that the usual remarks concerning the solution

of triangular systems apply: in practice large growth does not occur in

these quantities.

In order to guarantee stability we must also show that the a 's

and 3. 's are bounded. We shall do this by showing that the growth of

a, is bounded at each step of the algorithm. This is sufficient since

it can be demonstrated that the growth of 3, ,n is bounded as long as the

growth of a, .. is bounded.

It will be necessary to impose an additional condition on the

acceptance of a 1x1 pivot. The number 6 in

'6 3 '

will be accepted as a Ixl pivot if |6| ̂ ci|3| as before, or if

\o6\ > a3 . This does not affect any of the preceding analysis.

We shall begin by establishing several preliminary lemmas.

79

Lemma (3.5). Let A be symmetric and suppose that A = MDM . Let the

eigenvalues of A be X 1 X <̂ .. .^ X , and let the eigenvalues of D be

]!., <]!-<...< \i . Let k be the index such that X, < 0 for 1 < j < k,

1 — 2 — — n J — _ J _ '
and X. > 0 for k < j < n. Then X. < cy. for 1 < j < k, and X. > cy,

3 •' 3 - 3 --^ - ' 3 - 3

for k < j 1 n, where vc is the smallest singular value of M.

Proof: By the mini-max theorem

X. = mln
^ dim(S)=j

min
dlm(S)=j

min
dim(5)=j

max
X Ax

xeS X X
x̂ 'O

t„
s Ds

""̂ J t -1 -t 5 s M n £ se:
s?f0

max
seS
s?40

t„
s Ds

^ f

t
s s

t
s s

s M M s

Since
t
s s

s M "M s

> c > 0, we have for j £ k that

X , <_ c min
J dim(S)=i

s Ds
max
seS s''s
s?̂ 0

= cy.

Similarly, for j > k we have X ^ cy . g

For the following discussion we shall also need to know the

smallest singular value of certain lower triangular matrices in order to

apply Lemma (3.5),

Lemma (3,6), If M = T J , then the smallest singular value of M is

/c, where

1
c >

y'*z

80

If M =
1 0 0 '
Yo 1 0

I Yl 0 1 J
, then the smallest singular value of M is /c, where

c > — 2 2
Yo + Yl + 2

Proof: The smallest singular value of
1 0

L Y

0 ' r-
.. I is /c, where

c = (Y^ + 2 - /Y^+4Y^)/2

The smallest singular value of
1 0 0

Yo 1 0
Yl 0 1 J

is /c, where

= [YQ + Yl + 2 - /(YQ+YI)^ + 4(YQ+YI))/2

If c = (a + 2 - /a^ + 4a)/2 with a > 0, then

^ (a+2)^ - (a\4a)

2(a + 2 + y4^+4a)

a + 2 + /a'̂ +4£

+ 2 + /a2+4a+4

2(a+2) a+2

The lemma follows from this inequality.
D

It will also be of interest in the following discussion to bound the

"-norm of the inverse of a 2x2 block.

Lemma (3.7). Suppose that D =

Then

Si Si ^
Si S2

, wi th oi|6 I > max(|6 | , | 6 |)
21 1 1 " ' 22'

81

1̂^ L l (l-a)|6,J •
21'

Proof:

where |A| = |6^^622 - 6^^ ^ 52^ - a262^ = 6^^(l-a^.

||D||̂ = I621I +max(|6^^|,|622|)

<_ (l+a)|62i| ,

-1,| ^ (l+«) f 1] 1
" " - n 2, [l6,jj (1-a)

Thus
d-a")

6211J (1-a)16211 • D

Two more lemmas are needed before we can establish the bounded-

ness of the a, . k

Lemma (3.8). Let B e R be symmetric and nonsingular with eigenvalues

XT < X„ <..,< X , where n > 2, Let z e R , and n e R. Let
i — z — — n —

B' = B + nzz .

Then n max|B!.| ̂ X, where X = min |X.|.
Ĵ l<j<n 1

Proof: Let B' have eigenvalues y, < y„ <...< y . From Lemma (2.2) of
i — 2 — — n

Chapter II,

n > 0 => X- < y, < X < y ,
1 — 1 — n — n

while

n < 0 => y. < X. < y < X .
1 — i — n — n

If Xl > 0, then |y^| >. |X^|.

If X, < 0 and X > 0, then |y | > |X | when n > 0 and |y-| > |xj when 1 n ' n ' — ' n ' ' 1 ' — ' 1 '

n < 0.

82

If X < 0, then |y,| > |X |
n ' 1' — ' n'

We conclude that

y = max | y | >̂ X .
l<j<n J

By the standard norm inequalities we obtain

n max | B' . | >_ y

and the result is established.

Lemma (3.9). Suppose that the k-th step of the updating algorithm has

resulted in

)t

D

,(k) _
{ 1 0 U 6 3 1

V w 3 a

1 0

V w

•1

with a =1' 0, \&\ <a|3| and |a6| _< a3 . Then

t-1

B'>
|a| Idet D I |1 + o z A" Z|

(1+a) |det D^^^ I (|a| IW^A-'D-^J'^WI + 1 + il^) '

where M = (M^,M2), D =
^ Dl ol

0 D,

QAQ = (M^,M2)
D^ 0

0 D,
(Mi,M2)^ ,

~(k) ~
and D is that portion of D obtained up to step k. Here a is the

starting "a", and a is the modified "a" after k steps of the algorithm.

83

Proof: At the k-th step we have

^^(k)^(k)t ^ 5(k)5(k)~(k)t ^ 0
1
V

ol
0
w

6
. 3

M A
f

0
1
V

0
0
w

) t

+ M2D2M2

M'̂ ''1 1 |M„
^ r 5(1^) o„ 0 ^

0 (6-3^/0) 0
V 0 0 D.

M^^^ 1 jM,
: 1 " ^ J

+ a
0
3/a

w+3/av
(0, 3/a, w*̂ + 3/av^)

Now, det(A + a-zz) = det A(l + a z A z). Also, if p =

B =
fkV ' -

M̂ *̂ !̂ 1 I M„
I V I 2

iP^^ 0 0 ̂
0 (6-3 /a) 0
0 0 D.

M^^^l 1 I M„
I V I 2

0
3/a

w+3/av
and

then

Thus

t.-l det A(l + â z A z) = det(B + app^)

= det B(l + ap'̂ B """p)

2
= det D̂ ^̂ (6 - —)det ^2(1 + apS"^p) .

t.-l (k) (3.13) |det A||1 + agz'̂ A ̂ | = |det D̂'"''| |det D2 | | 6 --^111 + a p V \ |

Since |6a| <̂ a3 , we have

(3.14) |6a-3 I i 3 - |6a| ̂ (1-a)3^ ,

and

(3,15) |6a-3 I £ |6a| + 3 <. (a+l)3'

Also, one can show that

84

M̂ '̂ l̂ 1 I M„
I V I ^

-1

P =

0

3/a

- 3/aM~''"v + M"''"(w+3/av)

3/a

M2^w

^-1
where we use M to mean the inverse of the unit lower triangular matrix

« t^—t^—1"^—1
that occupies the lower triangle of M.. Thus if ({) = w M2 D^ M2 w, we

have

Hence

(3.16)

P^B-^ = \ — ^ + *

^ a •'

I t„-I I
P B p <

|a||a6 - 3 I

lald-cx) "̂ I'

by (3.14). Using (3.15) in (3.13) gives

2 , 2 , |det A||1 + a z V ^ I
(3.17) YT (1+°̂)̂ 1 |6 - 3 /aI =

det D^^^ I I det D2III + ap'̂ B "̂ p|

Therefore, using (3.16) in (3.17) gives

(3.18) 3^ > '^
I det D^l |l + OQZV-'-ZI

"<^^°'> IdetD^'^^KlalUl + 1 + 1^)

This is the desired result,
D

Observe that the quantities in (3.18) are independent of the updating

process except for |a|, and |det D |. Now we are ready to prove

85

Theorem (3.1). Suppose that the k-th step of the updating algorithm has

resulted in

,(k)
^ 1 0 U 6 R V ^ - ̂ t

V w

6 3

3 a

1 0

V w

with 16 I < a I 31 , and |a6| <. a3 . Then the next step of the algorithm

will produce a a' of the form

a' = a - bro, '"b K\
with I a'I bounded.

Proof: Let
' 6 3 ' ' 1 •

. Y .
= ^1

• 1 •

. Y .

, and

' 6 3 '

. e a . 1
= ^2

- Y ^

1
^ J

with

|yil t. ly-jl ̂ s in Lemma (2.4) of Chapter II. Let n. = y./(l+Y), j=l,2.

As we have already seen in Chapter II the updating process is

equivalent to forming

(3.19)

where D' and

,(k+l)
0 w.

^1 ^ ^1
V2 V W2

rii 0 0

0 D' 0

0 0 n.

1 0 w^

^1 ^ ^1
V2 V W2

^t

I
V

are, respectively, the next diagonal block of D and

the corresponding column of M. In (3.19) w = -Y.

w.

w„

1 0
= v+Yw, and

= w-YV.

The next step is to form

,(k+D
^ 1 0 I w, 1

0 I I w^
v„ V I w_ J

D

0

where D =

-1 ^

n2 0

0 D'

^ t

^1 ^

0
1 0 I w j * ^

0

V,

w.

V w„

, and v„ = v^-VVi-

86

Then we form

.(k+1) _
1 0 10

0 I j 0

V2 V I W2,

D + n2bb ri2b

-H
n2b

U 1 0 I 0 1'
0 I I 0

V2 V I W2,

where b =
<" w 1

0

w

, and W2 = W2-V2WQ-VW^.

1 J

Finally, we pivot and obtain the updated diagonal block D
k+1'

Let D = D+n.,bb^, and let 5 = max|D .|. Then |D | >_ a? when D ., is 1x1
k+1

If it is 2x2, I|DĴ ÎII„ ^ F(l-a) ' •̂ ° avoid cumbersome notation we

2 t -L
gives an updated n = n--n̂ b..B D, ,

shall let B = D.
k+1'

The factoring of
n2b

w. = (l-Py)(w'-Vw'), where w =

1^2^ ^2 J

of

f " l l
where b., consists of components of b. It can be shown that

Comparing this with the updating

algorithm described in Chapter II will show that

(3.20)

Now,

a ' = a+rVn

| n | 1 |n2l + n 2 | b j B - \ |

l l n 2 l + 3 n 2 ' | | b J | 2 | | B - l | | „

Hence, i f a > 1/2 then

(3.21)
3n^ IIbill!

1̂ 1 1 1 ^ 2 ! -̂ C d - a)

Let /o be the smal les t s ingu la r va lue of
. Vl I

From Lemma (3 . 6) ,

9 l l / (| | v i l r + 2) .

By Lemma (3.8) we have t h a t 3 C ^ | x | where X i s the smal les t e igenvalue of

D (in abso lu te v a l u e) . However, Lemma (3.5) impl ies |X|>^6 mln(|n | , | y |)

87

and thus

(3.23) K 1 J e min(|ni|,|y|)

where y is the smallest eigenvalue of D' (in absolute value)

we have that

F i n a l l y

(3.24) V = l lbj l^ <_ | | b t i m a x d Y l , ||w||^ + | Y | | | V | | J

Combining i n e q u a l i t i e s (3 .21) - (3 .24) gives

(3.25)
v^9n^(||vi||2+2)

1̂ 1 1 l^2l + m i n (| n i | , | y |) (l - a)

9 9
Since ||w|| and ||v|| are bounded we have that v = 0(Y) and

2 o
||v.. II = 0(Y) . Thus it is sufficient to bound the quantity

(3.26)
^2^

mind rill ' '^')

Suppose that |3| ̂ |a|. Since Y = (^-^2^^^ "^ ̂ ^^e

(a+&) - sgn(a+6)/(a-6) + 43'
23

+ 1

£ y(l + a + /(1+a)^ + 4) + 1

Thus (3.26) is bounded since <_ 1 and |y| is fixed. Therefore, we

shall assume that |3| < |o|. Now,

6a - 3
^2

1 + Y

However,

6a - 3
l l

2 2
y2(l+Y) ^ ^2 "̂ ^2'^ '

88

/ 2 2
Let \l) = sgn(a+6)/(a-6) +43 . Then

^ ^2 _ [(o-6)+ij;]̂ [(a-6)̂ iH-261
2

83 a

{a-6) + I);

2a
'(a-6)^ - / \ _!_ 26r(a-6)+ii;]

43^ ^ 83^a

Thus
Y Vr

< X +
&a

where x =
(a-&) + i(>

2a
Observe that

' ^1 1 + + /(l + ^ ^ ^

1
^ 2

1 + a + /(1+a)^ + 4

By assumption
6a

< a < 1 so that

Y y.
< X + X

We also have that

2̂l 2
[(a+6) - ^]

2

[(g_<S) - ,); -t- 26]

1 43 < —
2 1(0-6) + i|;| + 6 ,

Now,

(a-6) + ^\ = |a-6| + /|a-6|^ + 43^ 1 2|a-6|

Thus,

l "2 l i |^ - l« l^ (i^* l * l

89

Therefore,

h2l ±a^^)'^[^+ l«l + kl(-̂ +̂)̂

It follows that

4
Y n̂

< l[i§l+ |5| + |a|(x+x2)
— y[1-a ' ' ' '

- y
•"• + a + X + x^ ,
1-a

To bound
n2Y

we consider

6a - 3 (l+a)3
2

But

vl = (a+6)^ + 21a+6I/(a-6)^ + 43^ + (a-6) + 43^

> 2a^ + 26^ + 2(a^-6^) + (a-6)^ + 43^

9 2 2
= 5a - 2a6 + 6 +43

> 5a^ + (4-2a)3^ 1 5a .

Thus

(l+g) 3
- 5 ,2

But

2
Y =

\-^'
2 2 n

\ >

(a-6) + i|)
l2

2a

-43^
1 + a + >/(-^^

T2

(1+a) + 4

90

It follows that

Y n.

— 4
163

1 + a + /(l+3)^ + 4

803
(1+a) 1 + a + /(1+a)^ + 4

Using the same notation as in Lemma (3.9) and applying that result gives

^2 (l+a)|a||det 5^^^|(|a||*| + 1 + il^)

3
2 ^

|det Dil |l + o z^k ^z\

;;(k) Observe that if the previous a's and 3's are bounded then |det D | is

bounded. Thus we have bounds

This g ives

4
Y n2

y
< K and

4
Y n2

^1 ^S

But

|n| 1 |n2ld + niax(K̂ ,K2)) .

In2l 1 |a|(l+Y^)"^[i^+a+ x + x̂ j .

2 2
Since a' = (l+y) HQ we have

a- < a
r 1 2

+ a + X + X 1-a
(1 + maxiK^,K^)) .

This concludes the proof,
D

Theorem (3.1) provides a bound on the growth of a when pivoting is done.

The following theorem provides a bound in the remaining cases.

Theorem (3,2), If the algorithm updates a 2x2 block and accepts the

updated block as a 2x2 pivot then

91

o' 5 a 1 +
1-a

o r i f a 1x1 p ivot i s accepted from the updated block then

4a |
CT s a 1 +

1 - a •

If 6 is accepted from 6 3
3 a

as a 1x1 block then

|a'| £ |a| + max(|a|,|3|)/a

Proof:

Case 1. If 6 is accepted as a 1x1 block as a result of

6 3 '

- e a .

satisfying |6| ̂ a|3|, or |6a| > a3 then

Hence

a - 3/6

a'I < a +

1 |a| + |a|/a = |a|(l + l/a) ,

or |a'| < |a| + |3|/a .

Case 2. Suppose that a 2x2 block is updated and accepted as a 2x2

pivot. If the old block has elements 6.. then the updated block has

elements of the form 6.. = 6.. + aw.w.. The conditions that must be
13 13 1 3

satisfied are a|6 | > max(|6 |,|6 |) , and a|6 | > max(|6 |,|6 |) 21' '111»i"22 21' 11' 22'

Let D represent this 2x2 updated block, and let w = (w.. ,w) . Without

loss of generality we assume ||w||̂ = |w.. | . Then ||w ||„ ̂ 2|w, | . In this

case we have

. 2 t~-l
a = a - a w D w

92

so t h a t

2 i i ~ - l i
| a ' | l | a | d + 2 | a | | w j i r - ^ | | j

;-li
From Lemma (3.7), D < -ri T-n^—r ,

" "" - d-a)|6,il
Now,

>2il

1^11 " 1^111 - l^ll'^^ll *" «h2l'*^''2''ll

Thus

kw'il £a|62i| + |6ii|

la(|62i| + I621I)

£a(|62i| + I621 + aw2W^| + |aw2W^|)

I2a|62i| + a|awj|

Hence (1-a)|aw | ̂ 2a|6 -|, and we have

la' < a 1 + 2
f2aJ ^
1-a I 2
*• •' aw.

= a 1 +
4a
1-a

Case 3. A 2x2 block is updated and it is found that

a I 6-., I <̂ max(I 6 .. I , I 6„_ I) . We use the same notation as for Case 2.

Without loss of generality we assume that |6 ,| >_ |6 | (otherwise 6,

is brought to the 6.... position). Then

2 2
a w,

I 1
a = a - —z— .

Now

11

|6ii+awJ| i law^l - |6^^|

so that

Thus

kwil 1 |6^il + |6^^ |

H\ hill
r:=H^ < 1 +

11' 1*111

But

l-Sill £«l<52i l

£ a(|62i+aw2W^| + |aw2Wĵ |)

= a(|62i| + |aw2W^|) .

Thus

(3.27)

9 '̂
|aw^| - a|aw2W^| I621I

< 1 + a

11'
|5

< 2

11'

A similar argument shows that

2
|aw2l I622I + I622I

< <

11' I^J 11'

1 + a
• I 6211 + |aw2W^|

1 ^ 1 I 11'

Thus

(3.28)
|aw2| - a|aw2Wi|

< 2

11'

If l̂ il ^ IW2I then (l-a)|awi| <. |awi| - a|aWiW2|, and inequality (3,27)

shows that

I 2|

\av
(3,29) -:r

ii< 2
1-a

11'

93

9 9 9
However, if |w | > |wi| then (l-a)|aw^| _< (l-a)|aw2| <. |aw2| - a|ow^W2|,

94

and inequality (3.28) gives inequality (3.29). n

Theorem (3.1) shows that the growth of a can be sensitive to

near singularity in A. This can result in two ways. If o is much

larger than the eigenvalues of A then numerically A appears to be a rank

one matrix. Also, one of the updated eigenvalues can be shifted to zero.

This is reflected in the bounds obtained in Theorem (3.1) since one of

the bounds depends on — where y is an eigenvalue of D, and the other

bound depends upon l/(l+az A z). The quantity 1+az A z = 0 if and

only if A has a zero eigenvalue. We conclude that the use of the algo

rithm should be restricted to cases where the matrices involved are well

conditioned. Finally, we do not expect this technique to generalize to

the LU decomposition of non-symmetric matrices since our results are

heavily dependent upon properties of S5nmnetrlc matrices.

95

Chapter IV

The Use of Directions of Negative Curvature
in a Modified Newton Iteration

1, Introduction

In this chapter we present an algorithm for obtaining a numeri

cal approximation to the solution of the following problem:

(1.1) let f: f c R'̂ ̂ R;

find X* e P such that

f (x*) <_ f (x)

for all X in some neighborhood of x*.

For theoretical reasons we shall assume once and for all that f has two

continuous derivatives on V and that for any x„ £ t?, the level set

/.(XQ) = {x: f(x) <_ f(xQ)} is a compact subset of V. Additional assump

tions will be introduced as they are needed. The assumptions just

stated shall be referred to as assumptions (1.2).

Recall from Chapter I that we denote the gradient of f(x) by

g(x), and the Hessian by G(x). Given a sequence of vectors {x, } c t? we

shall use the notation f, = f(x,), g, = g(x) , and G = G(x,) . We shall

sometimes omit the argument x and write f for f(x), and g for g(x),

etc., when there is no danger of confusion. Throughout this chapter we

use 11*11 to denote the Euclidian norm, and x y to denote inner products.

The algorithm we shall present may be classified as a descent

method. Usually a descent method determines a descent direction s, at
k

the iterate x (i.e. g.s < 0). Then a linear search is performed to

obtain a, > 0 such that f(x,+a, s,) <̂ f, and we take x, .. = x,+a, s, .

96

Under some additional restrictions on the choice of a one can show that
k

lim g^s /||s II = 0. The vector s is usually related to g in such a way

that this limit equalling zero implies that the iterates converge to a

point X* where g(x*) = 0.

In addition to obtaining such a point x* we would like to be

able to assert that G(x*) is positive definite for this would imply that

f(x*) < f(x) for all X in some neighborhood of x*. Of course, we shall

not be able to accomplish this goal, but through the use of directions

of negative curvature we shall be able to guarantee that G(x*) is posi

tive semidefinite. For practical purposes this is very strong assertion.

For instance, if the Hessian were known to be nonsingular at all critical

points then the point x* would have to be a local minimum.

Recently the idea of using directions of negative curvature has

appeared in modified Newton algorithms [8,11,16]. In particular we are

indebted to the paper of McCormick [16]. Indeed, Theorem (3.1) is only

a slight modification of McCormick's result. However, this result led

us to consider a new line search strategy. The implementation of this

strategy which we present here is based in a fundamental way on the

factorization of symmetric matrices using the algorithm of Bunch and

Parlett [5] and this is discussed in section 4. In section 5 we give

termination criteria for the new univariate search strategy, and show

how this relates to previous strategies. Finally, in section 6 we give

a convergence result that includes various choices of descent directions

and we suggest a particular way to define a modified Newton iteration.

Since the algorithm is a descent method we shall begin with a

discussion of descent directions.

97

2. Descent Directions

The following definitions will be useful throughout this

chapter.

Definition (2.1). Let f: R -> R be twice differentiable in the open set

V.

(a) A point x in I? is an indefinite point if G(x) has at least

one negative eigenvalue.

(b) If X is an indefinite point then d is a direction of

negative curvature if d G(x)d < 0.

(c) A pair of vectors (s,d) is a descent pair at the point x

if when x is not an indefinite point then g s < 0 , gd<^0,

and d Gd = 0, while if x is an indefinite point then

g s £ 0, g d £ 0, and d*̂ Gd < 0.

An example of a descent pair would be to take s = -g(x). Then

if G(x) is positive semidefinite take d = 0, and otherwise take

d = -sgn(g e)e where e is the unit eigenvector corresponding to the most

negative eigenvalue of G(x). We shall see that there are more attrac

tive choices than this. However, regardless of the specific choice, a

descent pair fails to exist at x only if g(x) = 0, and G(x) is positive

semidefinite.

The search strategy we shall present departs from the usual

strategy discussed in the introduction. Instead of using only one

descent direction and searching in a line determined by that direction,

we shall consider searching along a curve of the form

(2.1) C: {x = x+(()i(a)s+((»2(a)d: a >̂ o}

98

with (s,d) a descent pair at x, and with <|i,(0) = (j) (0) = 0. We hope to

produce an a > 0 such that

(2.2) f (X-) <_ f (x)

If we let *(a) = f(x) we encounter a univariate minimization problem

where $" is continuous as long as ^'^,<^'l are continuous. The following

lemma gives sufficient conditions under which (2.2) can be satisfied.

Lemma (2.1). Let $: R -> R be twice continuously differentiable on the

open interval I which contains the origin, and assume that y e [0,1).

Then there is an a > 0 such that

$(a) < $(0) + y $'(0)a + $"(0) ^

for all a e [0,a] provided that either $'(0) < 0, or $'(0) = 0 and

$"(0) < 0.

Proof: The mean value theorem implies that for every u > 0 there exists

8 e (0,a) such that

2
$(a) = $(0) + $'(0)a + $"(0) y-

Hence,

where

Since

+ j[$"(e) - $"(0)]a2

$(a) = $(0) + y $'(0)a + $"(0) ^ + r(a) ,

$'(0)a + $"(0) Y-r(a) = (1-y)

+ T [$ " (9) - *"(0)]a2 .

TI^^< 0 .
a^-0+ a

there exists an a > 0 such that r(a) < 0 for all a e [0,a]
D

99

This lemma not only tells us when (2.2) can be satisfied, but

also that the function f must decrease by a significant amount along the

curve X . It also indicates that a larger decrease is likely when

$"(0) < 0. We, of course, want to use the simplest functions (j).j and ())_

which will guarantee that the hypothesis of Lemma (2.1) is satisfied.

Observe that if ^(a) = f(x) with x as in (2.1) then

a a

(2.3) $'(0) = g(x)̂ (,f.̂ (0)s + <t)̂ (0)d) ,

(2.4) $"(0) = g(x)*'(<|.:̂ (0)s + <^^(0)d)

+ ((|.]̂ (0)s + <|)̂ (0)d)̂ G(x)((t){(0)s + <|)̂ (0)d) .

Suppose that g s = g d = 0 a t a n indefinite point (this occurs for

instance at a saddle point). Then in order to insure $"(0) < 0 without

imposing further conditions on s we must require (|)J(0) = 0, and

(l)'(O) > 0. Then (2.3) and (2.4) simplify to

(2.5) $'(0) = g(x)^(<t.^(0)d) ,

(2.6) $"(0) = g(x)̂ (<l.'̂ (0)s + (|.̂ (0)d)

+ (<j>̂ (0)d)̂ G(x)(<|)̂ (0)d) .

When G(x) is positive definite then d = 0 must be satisfied in order for

(s,d) to be a descent pair. Thus $'(0) = 0 and we must have <t»'i(0) > 0
00

in order to insure $"(0) < 0. Therefore, if (j), (a) = I 3.a'' and
3=0 ̂

't'ô ") = I Y.a"" then we must have 3Q = 3i = 0 with 32 > 0 and YQ = 0
j=0 ̂

with Yl > 0. The simplest functions of this type are, of course,

2
(t)l(a) = a , <|)2(a) = a .

In this case

100

(2.7) $'(0) = g(x)"'d ,

(2.8) *"(0) - 2g(x)''8 + d'G(x)d .

3. A Modification of the Armijo Steplength Procedure

In Section 2 we Introduced the notion of a descent pair. The

motivation for considering the use of a pair of vectors rather than the

simpler strategy of determining a single direction of descent will be

discussed now. We shall present here a modification of a theorem of

McCormick, In [16] McCormick gives a modification of the Armijo step-

length algorithm [2] which includes second derivative information in the

form of directions of negative curvature.

The steplength algorithm will be described now. Given

Y,y e (0,1), let {x, : k=0,l,2,...} be a sequence of points derived from

the given point x as follows:

Determine a descent pair (s, ,d,) at x^ and let i be the smallest

non-negative Integer 1 such that

^3-1) yic,i - \ + Y ^ \ + Y \ C V

and

^3-2) ^(yk,i)i^k + ^ ^ ' ' t 4 \ + K V k i •

Take x i = Yî J- Leimna (2.1) shows that the iterates are well defined,

and if a descent pair does not exist at x then we accept x^ as a solu

tion to problem (1.1).

Theorem (3.1). Let f satisfy assumptions (1.2) and suppose that

||sj|,||d II are bounded independent of k. Then

101

(3.3)

and

(3.4)

lim (-ĝ .Sĵ) = 0
k-̂«>

lim (-d̂ Ĝ̂ d̂) = 0
k-XJo

Proof: The sequence {fî j is a decreasing sequence which is bounded

below due to the continuity of f and the compactness of I.(x^). Thus

lim (f,-f, J^T) = 0. There are two cases to consider.
k-x"

"k k+1

Case 1. Suppose the integers {i, } are bounded above by some m >̂ 0.

Then

\-\-l ̂ -̂ ^
2m

4̂ k -̂ -2 <\\
Since

'k k

the conclusion follows

-gS, >_ 0 and -d̂ G, d, >_ 0
k"k k

Case 2. The integers {i, } are not bounded above. Without loss of gen

erality we assume that lim 1, = +». By the definition of 1, , if

Oĵ = Y » then

(3.5) k̂+l ̂ ̂-'̂ '̂ k
t ^ 1 jt-, J
'k\ + 2 W k

However, due to our assumptions on f and 1.(XQ), a Taylor series argument

and the fact that g-^A-^ ±, 0 may be used to show that

2
(3.6)

with

(3.7)

k+1 — k k
t . 1 jt_ ,

'k̂ k + 2 W k •*• ''(^k'\'^k'°k) '

lim 2 = 0

k-̂ a,

Hence, combining (3.5) and (3.6) gives

file:///-/-l

102

-r(x, ,8 ,d ,a)
(3.8) i^ k k k ^_(i_^) t j_ 1 jt_ ,

Sk\ + 2 ̂ k̂ '̂ k

The conclusion follows from (3.7) and (3.8). r-i

The result presented by McCormick did not specify a choice of

x^.. when x was not an indefinite point, but did suggest the Newton

direction. In the case that x, was an indefinite point then
k

t
\ " (|l8kl|/||Pkl|)Pk ^^^^ Pk ^ descent direction such that S^^P^ 1 '̂ I'l̂ k"'
Also, d, was required to be a unit vector such that d, G d <_ c„X where

k
X^ is defined as the most negative eigenvalue of G . In the above
G, K
k

statements c,,c > 0. McCormick was able to conclude that if infinitely

many indefinite points {x } were to occur in the sequence {x,}, then

i r 1
any point of acctmiulation x of the sequence |x } must satisfy g(x) = 0,

_ 3

and G(x) is positive semidefinite with at least one zero eigenvalue. A

specific choice of s, and d, was not suggested.

Under the additional hypothesis that the number of critical

points in V is finite, and with a judicious choice of (s, ,d^) one can

show that the iterates defined by (3.1) and (3.2) converge to a point x*

where g(x*) = 0, and G(x*) is positive semidefinite. However, Armijo

type steplength procedures do not take into account any information

about the shape of the function along the curve x . More sophisticated

strategies are available for determining the steplength a .

In the rest of this chapter we shall be concerned with the

choice of (s, ,d) , and with a steplength procedure which specifies

criteria for terminating a univariate search along curves x of the form
a

(2,1). Finally, a convergence result will be given that indicates these

choices are quite reasonable.

103

4, Determining Directions of Negative Curvature

As we shall see, the results of Theorem (3.1) are useful only if

(̂ •1) ^ V k - ^ °) => (8k ̂ 0) '

and

(4.2) (^kVk "̂ °) "̂ (̂G ^ °̂ '
k

where X is defined to be the most negative eigenvalue of G, when x, is
IS,

an indefinite point and zero otherwise. Intuitively, if (4,1) and (4.2)

hold then the iterates {x, } are converging to a critical point where the

Hessian is positive semidefinite. These statements will be made precise

in sections 5 and 6, Here we present various ways in which (4,2) can be

accomplished. Matrix factorizations will play an important role. The

factorizations we shall discuss in some detail are Gill and Murray's

modified Cholesky factorization [11], and the method of Bunch and

Parlett [5].

Gill and Murray present an algorithm which for any sjoranetric

matrix A produces a unit lower triangular matrix L, a diagonal matrix D

with positive diagonal elements, and a diagonal matrix E with nonnegative

diagonal elements such that

A+E = LDL*̂ .

h
The elements of LD and E are bounded relative to the maximtim element of

A. This factorization depends upon nonnegative parameters (6,3). The

h
parameter g is used to force a bound upon the elements of LD . The

parameter 6 in a sense determines the level of positive definiteness

that the matrix A+E is required to have. Given the parameter 6 >̂ 0,

this factorization proceeds much the same as the Cholesky factorization

104

with the exception that when a diagonal element is found to be less than

or equal to 6, it is modified. This modification Is expressed in the

diagonal matrix E.

It is possible to obtain a direction of negative curvature from

this factorization when 6 = 0 . Assuming A has a negative eigenvalue,

one computes an index Z such that '^oo-'^oo £ I>.,.i~E. . for 1 £ j £ n. Then

the solution d to the equation

L d = e £ ,

where en is the unit vector whose £-th component is 1, can be shown to

be a direction of negative curvature.

With this factorization A can have a negative eigenvalue only if

E is nonzero. However, when 6 > 0 it is possible for E to be nonzero

even though A is positive definite. Thus the direction d obtained above

cannot be guaranteed to be a direction of negative curvature unless

6 = 0 , Unfortunately, when this factorization is used in a modified

Newton's method 6 > 0 must be specified to obtain a proof of convergence.

The factorization of Bunch and Parlett allows an alternative

that avoids this difficulty. We have already discussed this factoriza

tion in chapters I and II, but we wish to emphasize here the properties

of this factorization relevant to this discussion.

Given any symmetric matrix A the factorization will obtain a

permutation matrix Q, a block diagonal matrix D, and a unit lower tri

angular matrix M such that

QAQ*̂ = MDM*̂ .

The matrices M and D satisfy

105

(4.3) The elements of M are bounded by a fixed positive

constant which is independent of the matrix A.

(4.4) D is a block diagonal matrix with one-by-one or

two-by-two diagonal blocks.

(4.5) D has the same number of positive, negative, and zero

eigenvalues as A (Sylvester's Inertia Theorem).

(4.6) The number of 2x2 diagonal blocks plus the number of

negative diagonal elements which occur as 1x1 diagonal

blocks of D is equal to the number of negative eigen

values of A. In the case that A is positive semi-

definite, D is a diagonal matrix with nonnegative

diagonal elements.

The following lemma will show how this factorization can be used

to obtain directions of negative curvature which satisfy (4.2).

Lemma (4.1). Let A = WBW where W e R is nonsingular, and B e R

is symmetric. Assume that A has at least one negative eigenvalue. Let

{z.: j=l,2,.,,,m} be unit eigenvectors for B corresponding to

eigenvalues

X, < X- < ... < X < 0 .
1 — 2 — — m

k
Let z = J, z. where 1 £ k £ m and l e t

j = l ^

(4.7) wV = z .

Then

A, l k ^ [K (W)] ^ ^
y y

106

-111 where X i s the smal les t e igenvalue of A, and K„(W) = ||w|| ||w~ || i s the

Euclidean condi t ion number of W.

Proof: If X i s a u n i t e igenvector for A corresponding to X then
A

X Ax = X, and i f u = W x t h e n
A

X. = x A x = u B u > X , ||u|| A _ 11, ,1

Moreover, s ince ||u|| <_ ||w||, and X. < 0,

(4 .8) Â ^ Sll̂ l

Now note t h a t from (4,7)

y Ay =

Since y | = W

(4.9)

- t
^

l j= i -"j

f k 1

^ ^ 3 j = l J

< kllw

B
k

^ ^ 3 [j = l l

- 1 ,

= i A. < 0 .
3 = 1 ^

we have

t '' i
l _ A i < ,1 = 1 -*

t - , 2|. -1,|2
y y k ijw 11

k^llw-^II^

D
Together, inequalities (4,8) and (4,9) give the desired result.

If Lemma (4,1) is to be useful, then W y = z must be easy to

solve. Also, the eigensystem of B must be readily available, and the

factorization A = WBW should be relatively cheap to compute. These

requirements rule out a full eigensystem decomposition of A and also the

factorization of Aasen [1] which gives B in tridiagonal form. However,

the Bunch-Parlett factorization certainly satisfies all these require

ments with the additional feature that K2(W) has a bound that is

independent of A.

Fletcher and Freeman [8] have suggested the use of this factori

zation to obtain a direction of negative curvature. The direction they

107

suggest corresponds to taking k = m in Lemma (4.1). However, Lemma

(4.1) suggests that the best direction to use is with k = 1 since this

2 2 reduces the magnitude of the constant k [K2(W)] and is slightly cheaper

to compute.

5. A Steplength Algorithm

Once a descent pair (s,d) has been determined at a point x then

we are faced with the problem of determining a such that

f (x-) £ f(x)

2
where x = x+a s+ad, 0 < a. One solution would be to determine a such

a
that

(5.1) f(x-) = min f(x) ,
a- ^„ a â O

but this is a very difficult computational problem. It is computation

ally more desirable to replace the problem of satisfying (5.1) exactly

with the specification of criteria for terminating a univariate minimiza

tion procedure that is designed to solve (5.1).

Such an approach is motivated by the success of previous algo

rithms which have been used when a single descent direction is specified.

Given a descent direction s at a point x, one such algorithm is to ter

minate the line search when an a has been found which satisfies

(5.2) g(x+as) s >_ ng(x) s ,

and

(5.3) f(x+5s) ̂ f(x) + ayg(x)^s ,

where 0 £ y <̂ n < 1 are preassigned constants. If a sequence of points

{x, } are determined where x, ., = x.+a, s, with x = x, , s = s, , a = a, '• k ' k+1 k k k k' k k

108

satisfying (5,2) and (5,3) for each k, then

(S k + r 8 k ^ \ ^ - (i - ^) V k '

and hence

(5.4) ll8k+r8kll^-(^-^^4Vll«kll •

I t follows from (5.4) that

(5.5) a j s j >. iP(-(l-n)g^s^/ | |sJ)

where i|< is the reverse modulus of continuity of g [17, p, 482], Since

f̂ .̂. <_ f. , and f must be bounded below on the compact set L(x_), we have

that lim (f 1̂ -̂ 1̂ 4.1) = 0 and thus (5.3) implies
k-x»

(5.6) (aullsj) gS^/|k|| ̂ 0 kii°k"' 6k k'

Since ^(t.) ^ 0 Implies t ->- 0 it follows from (5.5) and (5.6) that

(5.7) lim g^s^/||sj| = 0 .

k->«>

Usually g and s, are related so that (5.7) Implies ||g,|| ->• 0 which in

turn implies ||sj| ->• 0. Thus it is concluded that ||x^^..-xj| •* 0 and

||gj| -*• 0 as long as the a, are bounded. This is enough to insure that

lim X, = X*
1 k k-+«>

with X* a critical point of f due to the following lemma given in [17].

Lemma (5.1). Let f: P c R ->• R be continuously diff erentiable on the

compact set P^ c P. Let

, ^ ^ S = {x: X e P Q , g(x) = O} ,

and assume that S is finite. If {x, } c P is a sequence such that

lim i l v r ^ J = 0' î '" isJI = 0 •
k-+«> k-x"

109

then lim x = x*, where x* e S.
k->«. ^

Proof: See [17, p. 476].

A full discussion of this type of strategy may be found in [17]. Par

ticular algorithms of this type are given in [12,17], The strategy has

a geometrical interpretation which is depicted in figure 2.

•y

D

f(x^)

y = f(x) + ang(x) s

y = c + ang(x) s

Figure 2

A Search Along x+as

Here y = n and a is the smallest positive root of the equation

g(x+as) s = Tig(x) s. The local quadratic approximation to f(x+ap) is

t 1 2 t <t)(a) = f (x) + ag(x) s + y a s G(x)s

which is convex near a = 0 if G(x) is positive definite as shown in

figure 2, Condition (5,3) guarantees sufficient decrease of the func

tion so that ||gî|| -> 0 which means that f(x+ap) lies below the top line

in figure 2, Condition (5.2) guarantees that the distance |x, .. - x, ||

does not become arbitrarily small. The picture indicates that the only

possibility for a* £ a, to be small is that x is close to a local

minimum.

110

The termination criterion we shall give may be viewed as an

extension of these ideas which are suitable for the situation when an

iterate x is an indefinite point. We replace (5.2) and (5.3) with the

following rule. If (s,d) is a descent pair at x then we terminate the

search when a has been found which satisfies

(5,8)

and

(5.9)

g(x-)^(2os + d) >_ n[g^8 + 2a(g*̂ s + ̂ '^Gd)] ,

f(x-) £ f + y5̂ [g*̂ s + ^^Gd] ,

with 0 £ y £ n < l a s before. Note that when d = 0 these conditions

reduce to those of (5.2) and (5.3). Again there is a geometrical inter

pretation which is depicted in figure 3.

-*- a

y = f + n[ag'̂ d + a^(g^s+d^Gd)]

^ y = c + n[ag^d + â (ĝ s+d'̂ Gd)]

Figure 3
2

A Search Along x+a s+ad

I l l

Here a* is the smallest positive root of the equation

g(x^)^(2os+d) = n[g'̂ d + 2a(g*̂ s +|d*^Gd)] .

The situation shown in figure 3 describes the shape of f(x) along the

curve

2
C: Ix : X = X + a s+ad} ,

I a a •"

where x is an indefinite point (see figure 4)

r

Figure 4
2

The Curve x+a s+ad

An additional requirement is placed on a steplength algorithm at an

indefinite point. Sufficient decrease of the function must be used to

force the negative eigenvalues of the Hessian to zero as well as to

force the gradient to zero. This is guaranteed by condition (5.9). In

addition to this we must not let ||x, ,i - x, || become arbitrarily small.

This is accomplished by condition (5.8). The a* pictured in figure 3 is

similar to its counterpart in figure 2. The picture suggests that the

only possibility for a* to become small is for the iterate x, to be

close to a local minimum. The inflection point which must occur along

the path C must either be crossed or become "flattened out" in the

iterative process.

We note with Fletcher and Freeman [8] that if a direction d, of

negative curvature alone is used (taking s, = 0) then the condition

112

l̂ +l'̂ kl - "'̂ '̂̂ k ^^ inappropriate for termination of the linear search

because g, d may be close to zero even far away from a minimum. They

found it necessary to give termination criteria based on an estimate of

the first derivative of f(x) at the inflection point. The estimate
a

was obtained from the value of the derivative of a related quartic poly

nomial at its corresponding inflection point.

The following lemma will show that conditions (5.8) and (5.9)

can be satisfied whenever a descent pair exists at a point x.

Lemma (5.2). Let $: R ̂ R be twice continuously differentiable in an

open interval I which contains the origin; and suppose that L(0) <= i is

compact where L(0) = {a e I: $(a) £ $(0)}. Let y e [0,1) and n e [y,l).

Then if $'(0) £ 0 and $"(0) < 0 there is an a e (O,") n I such that

(5.10) $'(a) >_ n[$'(0) + $"(0)a] ,

and
-2

(5.11) $(a) £ $(0) + y[*'(0)a + $"(0) ̂] .

Proof: The assumption that $'(0) £ 0 and $"(0) < 0 Implies the existence

of 3 e I with $(a) < $(0) for 0 < a < 3. Let 3 = sup{3: ̂ (a) < *(0)

with 0 < a < 3}, Then 3 > 0, and the assumption on L(0) implies 3 e I

is finite. The continuity of * Implies *(0) = $(3). Thus

(5.12) $(3) >. $(0) + y[$'(0)3 + $"(0) •^] ,

Define h: I -> R by

2
h(a) = $(a) - $(0) - n[$'(0)a + $"(0) ̂] .

Since y £ n we have h(e) >̂ 0. Note also that h(0) = 0, h'(0) £ 0,

h"(0) < 0. This together with the continuity of h implies the existence

of 6̂ e (0,3] such that h(3ĵ) = 0, and h(a) < 0 for all a e (0,3). Now

113

Rolle's Theorem implies the existence of a e (0,3,) such that h'(a) = 0,

and (5,10) follows. Also, h(a) < 0 and y £ n imply (5.11). r-.

If we take $(a) = f(x) then Lemma (5,2) implies that conditions (5.8)

and (5.9) can be satisfied. In the next section we will show how these

conditions may be used to prove the convergence of a modified Newton

method.

6. Convergence of the Modified Newton Iteration

Now we turn our attention to defining a modified Newton itera

tion. We shall give a convergence result based on the use of descent

pairs and the steplength algorithm discussed above. The proof proceeds

in two parts. The first result is somewhat independent of the defini

tion of the iterates. The second part will use the particular way in

which the iterates are defined to establish convergence.

The general iteration from a point x, begins with determining a

descent pair (s, ,d,) at x, . Let

(6.1) $^(a) = f(Xĵ + â Sĵ + ad^) .

Assume y € (0,1) and T\ e [y,l) are independent of k. Then a, > 0 is

determined such that

(6.2) yk = ^k-̂ V k - ' V k ^ ^ '
2
"k

(6.3) f(y^) £ f(xĵ) + y$;̂ (0) -f ,

(6.4) *|̂ (â) >_ n[$^(0) + $;̂ (0)â] ,

Take xĵ î = y,̂ .

One might note that due to (5.11) in the statement of Lemma (5.2)

114

2
°kl

we could require f(y,) £ f(x,) + y *'(0)o + $"(0) -r- instead of (6.3).
K. k [_ k k k 2_

However, the additional term does not enhance the convergence result in

any way, while it does give a more stringent requirement to be satisfied

by the univariate search. The first step in the convergence result is

Theorem (6.1). Let f satisfy assumptions (1.2). Then the iteration

defined above satisfies

(6.5) lim -g^s^ = 0 ,

and

(6.6) lim -d^G.dj^ = 0 .
k-x»

Proof: From (2.7) and (2.8) we have *'(0) = ĝ d and *Ĵ (0) = Ig^s^ +

d̂ G d . Since (s, ,d) is a descent pair, $'(0) £ 0, and $"(0) < 0.

Thus (6.3) implies that {x,} c L(x^). By the continuity of f and

compactness of f-(x̂) we have lim(f,-f^^,) = 0. Now
2 k->"

"k

V \ + i - -̂ '*k(o) -f - °' ^° ̂ ^^^
2 t

(6 . 7) l im -a^gj^Sj^ = 0 ,
k-x»

and

(6.8) 11m -aJd^G d^ = 0 .
k-Ko

From c o n d i t i o n (6 . 4) we o b t a i n

^k^V " '̂ k̂)̂ " Vk(°) - -(i-n)[$^(o) + *;;(o)aĵ] .
and hence

^k^V - *k(°^ - Vk(°^ - -(i-n)$;;(o)aj^ ,

An application of the mean value theorem now yields that for some

\ e (0,a^),

115

(6.9) $|^(ej^) - $1^(0) >. -(l-Ti)$J^(0) .

The desired result now follows readily, for if either (6.5) or (6.6) do

not hold, then there is a subsequence {k.} and a a > 0 such that

(6.10) -$Ĵ (0) ̂ a > 0 .
1

Hence (6,9) implies that {a, } does not converge to zero. However, if
1

{"k ^ ^°^^ ^°^ converge to zero and (6.10) holds, then (6.7) and (6.8)
1

cannot be satisfied. This contradiction establishes the theorem. „

The {a, } of (6.2)-(6.4) are to be determined by a univariate

minimization algorithm applied to $, (a). Let 3 > 0 be fixed, and termi

nate the search when 0 < a £ 3 has been found such that (6,4) is

satisfied with a in place of a, . If (6.3) is also satisfied we accept

aĵ = a. If either (6.4) cannot be satisfied (say within a fixed number

of steps) or if a does not satisfy (6.3) we take o) to be the largest

element of the set {2 : 1=0,1,2,...} such that (6.3) is satisfied with

ao) in place of a, and then accept a, = ao). If infinitely many of the

a, 's must be determined in this way, then Theorem (3.1) applies so that

(6,5) and (6.6) are still obtained. We shall call this process the

steplength rule SR(y,r),3).

Our next result will show that the iterates defined by this

steplength rule converge to a critical point of f where the Hessian is

positive semidefinite. It is here that specific properties of the

descent pairs (s, ,d,) are crucial.

Theorem (6.2). Assume in addition to the hypothesis of Theorem (6.1)

that f has finitely many critical points in i-(x_) . Suppose that the

sequence {x, : k=0,l,2,...} has been obtained using the steplength rule

116

SR(y,n,3) where the descent pairs (Sî »d,) satisfy

{||s ||, ||d,||: k=0,l,2,...} is bounded together with

(6.12) (ĝ Sĵ ̂ 0) => (Ey. ^ 0 and s^ ̂ 0) ,

and

(6.13) ("^kW "̂ °̂ "̂ (̂G "̂ ° ^^^ \ ^ °̂ '
k

as k -> ". Then

lim X, = X*
1 k

with g(x*) = 0 and G(x*) positive semidefinite. Moreover, if infinitely

many of the x, are indefinite points, then G(x*) must have at least one

zero eigenvalue.

Proof: From Theorem (6.1) we see that lim gĵ Sĵ = 0 and lim dĵGĵ d̂ ^ = 0.

By (6.12) we have g^ "*• 0 and s, -^ 0. By (6.13) we have X^ -̂- 0 and

d, ->• 0 . Now,
k

K^i - ^ 1 1 A^J + siid̂ ii

hence lim ||xj^^j^ - x^|| = 0 .
k-x»

Therefore, Lemma (5.1) applies and we obtain

lim X, = X* ,
k-x"

with g(x*) = 0. Since X -»• 0, we also have by the continuity of G

that G(x*) must be positive semidefinite. Moreover, if Infinitely many

of the X, are indefinite points then every neighborhood of x* contains

an indefinite point. Thus the continuity of G implies that G(x*) has at

least one zero eigenvalue. _

Obviously, the proof of Theorem (6.1) rests on the steplength

117

rule, while the proof of Theorem (6.2) rests on the particular choice of

the descent pairs. Many choices of s, are possible which satisfy (6.12).

Indeed, If A, is any sequence of symmetric positive definite matrices

'k
such that ll Âll , \\k^ \\ are bounded independently of k, then choosing s.

as the solution of

V k = -Sk

will satisfy (6.12).

In section 3 we gave several ways to choose the d, at an indefi

nite point so that

(d^Vk ̂ °̂ "̂ (̂G ^ °̂ •
k

The additional requirements that d, must satisfy are obtained if we

replace d, with ±y(X„)d , where Y is a function such that Y(t,) ->• 0 =>
k

t, -> 0, and where the sign is chosen to make g, d, £ 0.

The iterates should also reduce naturally to Newton's iteration

as soon as a region is found where the Hessian is positive definite.

Indeed, the main motivation for this strategy is to obtain the iterates

using second derivative information which is based on the true quadratic

model at each x, . Of course, it is expected that in practice very few

indefinite points will be encountered during the iterative process. In

fact. Theorem (6.2) indicates that the strategy we have presented

actively seeks a region where the Hessian matrix is positive semi-

definite. If, for example, the Hessian G(x) is nonsingular whenever x

is a critical point of f then only finitely many of the iterates can be

indefinite points.

Finally, we shall suggest a way to obtain the descent pairs

118

(s, ,d) which satisfy all of the requirements of Theorem (6.2). In our
K. iC

description we assume G == W M 5 is the Bunch-Parlett factorization of

the Hessian. Thus we have omitted explicit representation of the per

mutations Q which will be present in practice. Given f and XQ which

satisfy the hypothesis of Theorem (6.2), for k=0,l,2,... define

(6.14) s, as the solution of

(\ \ < > \ = -^k

where B, = UJT "k ^^ obtained from Dĵ by f i r s t

obta in ing the eigensystem D̂^ = W \ °^ \ ^"d

(k)
then rep lac ing the diagonal elements X of Â^

with

max dxf^'^l, en max Ix̂ '̂ l̂, e) ,
l£i£n -* ll.lln

where e is the relative machine precision. In the decomposition of Dĵ

we have u5u, = I, and A diagonal. Note that only 0(n) arithmetic
K. K. K.

operations are required to obtain D, from D, .

(6.15) d, is the solution to

k

where X is the most negative eigenvalue and z,
k

the corresponding unit eigenvector of D . When D,

does not have a negative eigenvalue we take d, = 0 .
k

The compactness of L(x») and the continuity of G imply that the

elements of G, and the components of g, are uniformly bounded. Thus

(Sĵ ,dĵ) satisfy the requirements of a descent pair as well as (6.12)

and (6.13) due to the bound on the condition numbers K„(M,).

119

The above choice of (s, ,d,) is somewhat ad hoc and we make no

mathematical statements concerning the desirability of this choice.

However, in the next chapter computational results will be reported

which show that this specification of (s, ,d,) works reasonably well in

practice. We wish to emphasize that many other choices are possible.

We have not addressed the problem of providing an initial step a

to the univariate search. Many strategies for determining the initial

step are possible. However, we have not found a strategy with enough

theoretical basis to recommend it over something very simple such as

taking the initial step to be a = 1 each time. Note, however, that

whatever strategy is chosen must eventually take a = 1 in order to retain

the local quadratic rate of convergence enjoyed by Newton's method.

7. Conclusions

The algorithm we have just described has the following informal

description:

(7.1) Given XQ e P

for k=0,l,2,...

(1) Determine a descent pair (s, ,d,)

(2) Determine a by SR(y,n,3)

(3> ^k+1 = ^k + \ \ + V k •

Step (1) involves evaluating and factoring the Hessian G, . Step (2)

involves the use of a univariate search that can satisfy SR(y,Ti,3)«

The importance of this iteration is that it represents a natural

extension of previous theory to include second derivative information.

It avoids saddle points and possesses a strong theoretical convergence

120

property. Finally, the iteration, even in this preliminary stage of

development, performs well in practice.

121

Chapter V

Computational Results

1. Introduction

The purpose of this chapter is to present computational support

of the theoretical results obtained in chapters II, III, and IV. The

updating algorithm was tested for timing and accuracy on a large number

of random updating problems. The optimization algorithm was tested on a

set of test problems which have been used extensively at Argonne

National Laboratory for such purposes [5]. In addition to this, the

algorithm was tested on some problems which demonstrate its behavior

when many indefinite points are encountered during an Iteration.

2. Testing the Updating Algorithm

There are two important criteria for testing an updating algo

rithm. The first criterion is that the updating algorithm actually

should represent a computational savings over the alternative of forming

the updated matrix and refactoring. The second criterion is that solu

tions of linear equations using the updating method should be reasonably

close to solutions obtained by forming the updated matrix and

refactoring.

Timing the updating algorithm and comparing to the alternative

is a straightforward task. In order to address the question of accuracy

one must decide what quantities should be measured and compared. For

each update it seems reasonable to compare

(2 .D ||Ax^-b||/||b||

122

with

(2.2) l|Ax-b|/||b||

for several right hand sides b. In (2.1) the vector x is the solution

obtained by forming and refactoring the updated matrix. In (2.2) the

vector X is the solution obtained by using the updating algorithm. The

quantity

(2 .3) |x,-xj|/||xj

should also be computed.

The quantities in (2.1) and (2.2) measure the relative error in

the residual. This relative residual indicates how close the computed

solution is to satisfying the equation Ax = b relative to the size of

the right hand side b. The quantity (2.3) measures how much the answer

obtained by the updating method has deviated from the answer obtained by

computing and refactoring the updated matrix.

The process used to test these criteria can most easily be des

cribed by means of an informal algorithm. Given a dimension n, we start

with A = I the nxn identity matrix. Then the following iteration is

carried out.

(2.4) A := I

for k=0,l,2,... ,m

(1) z e R is chosen with random components in (-1,1);

(2) a e R is a random number in (-100,100).

(3) A = A + azz^

(3.1) Q AQ*̂ = M 5 M*̂ by updating; u u u u u °

(3.2) Q^AQ^ = M^D^M^ by forming A and factoring;

123

(4) for j=l,...,5

(4.1) b e R is chosen with random components in

(-50,50);

(4.2) Solve Ax = b

(i) Using (3.1) to compute x ;

(11) Using (3.2) to compute x ;
c

(4.3) Compute

(D ||Ax̂ -b||/||b|

(ID ||Ax̂ -b||/||b|

(ill) llv^^l|/||b|

The steps (3.1) and (3.2) of iteration (2.4) were timed. These

timings were averaged over the number m of updates. Thus the time re

quired by the updating algorithm can be compared to the time required by

the alternative of computing A and refactoring. The solution to Ax = b

was computed for five different right hand sides after each update. This

was done to increase the chances of obtaining a large residual

||AX -b|| /||b||. The quantities (2.1), (2.2), and (2.3) were averaged over

all iterations and right hand sides. The results are shown in tables 2

and 3.

Table 2 shows the above quantities for various values of the

dimension n. In Table 2 UAVE is the average value of || Ax^-b|| / ||b||, CAVE

is the average value of ||AX -b||/||b||, and AVERR is the average value of

IIX -X II / ||x II . The quantity CTIME is the average time to compute and

refactor A and UTIME is the average time to update the factorization.

124

Table 2

Results for Increasing Order

n

5

10

20

30

40

50

UAVE

6 X 10"^'*

2 X 10"^^

1 X 10~-^^

3 X 10~^^

8 X lo"-̂ ^

2 X 10"^2

CAVE

4 X lo"^^

2 X lo"^**

3 X 10"^**

7 X lo"^"*

2 X 10~^^

3 X lo"^^

AVERR

4 X 10"^'*

3 X 10"^^

1 X 10"^^

2 X 10"-^^

4 X lo"^^

4 X lo"^^

UTIME

167

320

706

1162

1819

2533

CTIME

424

1567

6459

16606

32468

55016

The times shown here are in microseconds. The important thing

to note is the relationship of UTIME to CTIME as n increases. To see

2
that the numbers are in the correct proportion one should compare n" to

3

UTIME and -7- to CTIME. Observe also that there is roughly only a one

digit loss of accuracy using the updating algorithm. For each of the

results in Table 2 we have taken m = 100 in (2.4).

Table 3 shows the results of a particular updating sequence

computed by the iteration (2.4). In this example n = 10. The updating

process was carried out for 1000 updates. The results show every fifth

update selected from the beginning, middle, and end of these computa

tions. In Table 3 the quantities are not averaged. UERR is

l|Ax̂ -̂b||/ibl, CERR is || Ax^-b |{ / || b ||, and XERR is || x^-x^ || / || x^ | for only

one right hand side. UTIME and CTIME are the timings for each indi

vidual update in this case. For the entire sequence, the average

quantities were UAVE = 2 x 10~^^ CAVE = 3 x 10~^^, and AVERR = 1 x 10~^^.

Table 3

Results of a Long Range of Updates

125

beginning

middle

end

UERR

6 X 10

7 X lo'

3 X 10

1 X 10

1 X 10

-15

-14

-15

-14

- l i t

5 X 10

2 X 10

8 X 10

7 X 10

1 X 10

-11+

-13

-14

-14

-13

7 X 10

5 X 10

5 X 10

2 X lo'

1 X 10

-13

-13

-13

-13

-13

CERR

4 X 10

3 X 10

7 X 10

5 X 10'

4 X 10

-15

-14

-16

-15

-15

6 X 10

1 X 10

6 X 10

1 X 10

4 X 10

-16

-15

-16

-15

-16

3 X 10

3 X 10

1 X 10

1 X 10

1 X 10

-15

-15

-15

-15

-15

XERR

8 X 10

6 X 10

3 X lo'

2 X 10

2 X 10

-16

-15

-15

-15

-14

5 X 10

7 X 10

4 X 10

5 X 10

1 X lo'

-14

-14

-14

-14

-13

2 X 10

5 X 10

2 X 10

5 X 10

2 X 10

-12

-13

-12

-13

-13

UTIME

312

313

521

417

417

312

313

208

312

312

208

312

209

209

312

CTIME

1563

1875

1979

2083

1563

1667

1562

1563

1980

1667

1458

1667

1458

1771

1563

These results Indicate that the error analysis in Chapter III is

somewhat pessimistic. In particular. Table 3 shows that obtaining the

factorization by the updating method does not deteriorate much even over

a long range of updates. The timings show that the operation count

given in Chapter II was indeed a worst case analysis. They indicate

that the worst case rarely happens. This is demonstrated in Table 3

since for matrices of order 10 the operation count predicts that the

updating algorithm should require as much work as the alternative.

126

One disadvantage of the updating algorithm is the length of

computer code necessary to describe the algorithm. The timing results

indicate that it would be a worthwhile project to see if the length of

code could be decreased; perhaps at the expense of increasing the

operation count slightly.

3. Testing the Modified Newton's Method

The unconstrained optimization algorithm described in Chapter IV

was tested on some standard minimization problems. The computer imple

mentation is still under development. Therefore, the results presented

here are to be regarded as an indication that the method is promising.

There are a number of practical considerations that must be settled

before this algorithm can be recommended for general use.

One of the practical problems is the choosing of the descent

direction s at an indefinite point. We have described one way in

Chapter IV, but we feel that others should be tried. Also, it is not

clear what the scaling of the descent direction s should be relative to

the direction of negative curvature d.

Another problem is choosing the initial step for the linear

search procedure at an indefinite point. Enough information is avail

able at an Indefinite point to use a cubic polynomial to predict an

Initial step. To do this, one interpolates f, f , f" at x where the

2
derivatives are taken along the curve x+a s+ad. The resulting cubic

polynomial is then required to achieve a decrease A at its local minimum

a. The number A is the amount of decrease obtained on the last itera

tion. This process uniquely defines a polynomial p. We then have

127

a = (3A-2f')/f" .

We also require that the initial step a satisfy .5 £ a £ 1. Thus we

A

take a^ = a if .5 £ a £ 1. Otherwise we take the closest endpoint to a.

Obviously there is little theoretical justification for this choice of

a^, but it does an adequate job when safeguarded as mentioned.

Finally, there is always the task of choosing parameters. For

instance we must specify y, n, and 3 for the steplength rule SR(y,n,3)

(see Chapter IV), In addition to this we must specify criteria for

accepting an iterate as an approximation to a local minimum. This, of

course, requires the specification of other parameters.

In the following examples we have taken y = 10~ , n = .9, and

3 = 10 . An Iterate x, is accepted as an approximation to a local mini

mum when

(1) The Hessian is positive semidefinite,

^̂ ^̂ IV^k-il ^ (T^+E)(i+Ifkl>'

(iii) V l l l v J ^ (T+V^)(l+l|xJ),

(iv) g^g^ < e 2 / \ l + | f ^ |) 2 .

Here c is the relative machine precision. The parameter x is specified

by the user but defaults to lo/e if found to be smaller than e. For

these examples x is given the default value. These stopping criteria

are used in the Gill and Murray algorithm. We have adopted them in order

to obtain a good comparison of the two algorithms. These functions were

used as test problems:

128

(3.1) Rosenbrock's Problem;

n = 2,

f = (1-xp^ + 100(x2-x2)2,

standard start: (-1.2,1.0).

(3.2) Powell's Function of Four Variables;

n = 4,

f = (x^+10x2)^ + 5(x3-x^)^ + (X2-2X3)^ + lO(Xi-x^)^,

standard start: (3.0, -1.0, 0.0, 1.0).

(3.3) Brown's Function with Two Global Minima;

n = 2,

f = (Xi-X2-1)^ + ((x^-X2)^ + (x2-0.5)^ - 1)^,

standard start: (0.1, 2.0).

(3.4) Powell's Badly Scaled Function of Two Variables;

n = 2,

f = (10^x^X2-1)^ + (e"""! + e"''̂ _ 1.0001)^,

standard start: (0.0, 1.0).

(3.5) Box's Function;

n = 3,

f = f (e-^l«l _ e-^2«l _ ̂ (̂e-<5i _ ^-^06^^)2

where 6. = 1/10,

standard start: (0.0, 20.0, 20.0).

129

(3.6) Wood's Function;

n = 4,

f = 100(x2-x^)^ + (1-x^)^ + 90(x^-X3)^ + (1-X3)^

+ 10.1((x2-x^)^ + (x^-1)^) + 19.8(x2-l)(x^-l),

standard start: (-3.0, -1.0, -3.0, -1.0).

(3.7) Penalty Function I;

n = 4,

f = A I (x.-l)2 + B I x2 - i
1 = 1 -*-'•

standard start: x. = i, (for 1 £ 1 £ n)

, where A = 10 , B = 1,

(3,8) EXP6;

n = 6,
13 o

f = 2. X e ^ 1 - X, e ^ 1 + X e = "̂ - y^) ,

, -z± c -lOzi . - -4z^

where y. = e -̂ - 5e ^ + 3e -̂,

z. = (0,1)1, (for 1 £ 1 £ 13),

standard start: (1.0, 2.0, 1.0, 1.0, 1.0, 1,0).
(3.9) Brown's Badly Scaled Problem;

n = 2,

f = (Xi-10^)^ + (x2-2xl0"^)^ + (x^X2-2)^,

standard start: (1.0, 1.0)

(3.10) Beal's Function;

n = 2,

' U.2
f = I (c.-x (1-xJ))'

1=1 ^

where c^ = 1.5, C2 = 2,25, C3 = 2,625,

standard start: (1,0, 1,0).

130

(3.11) Rosenbrock's Cliff Function;

n = 2.

f =
Xi-3l 2

100
- (X1-X2) +e^O(x,-x,)^

standard start: (0.0, -1.0)

(3.12) Cubic Function;

n = 3,

^ 2
f = I f + 2,

1=1
4 2 2 4

where fi = x^, f2 = f3 = 0.1x^(x2-l) , f, = (x^-l) ,
f̂ = fg = 0.1xJ(x3-l)^, f̂ = (X3-1)^,

standard start: (2.0, -3.0, 3.0).

(3.13) Gottfried's Function;

n = 2,

f = (Xi - 0.1136(x^+3x2)(l-x^))^

+ (X2 + 7.5(2x^-X2)(l-X2))^,

standard start: (0.5, 0.5).

(3.14) Four Cluster Function;

n = 2,

2 2

f = [(xi-X2)(x^-sin(x2))]

+ [(cos(x2)-x^)(x2-cos(x^))]^,

standard start: (0, 0).
(3.15) Hyperbola-Circle Function;

n = 2,

f = (XiX2-l)^ + (Xl+X2-4)^

standard start: (0.0, 1.0)

131

Table 4 shows the results of these tests on problems (3.1) -

(3.15) with the starting point x taken to be the standard start. The

results of the Gill and Murray algorithm on the same problems are also

given in this table. For each problem the first entry is the result of

the algorithm presented in Chapter IV and the second entry is the result

of the Gill and Murray algorithm. The quantities represented are:

NITER = the number of Hessian evaluations,

NFEV = the number of function evaluations,

g g = l|g|| .

POSDEF = T if the Hessian was found to be positive

semidefinite at the solution, and F otherwise,

NEGCNT = the number of indefinite points encountered

during the iteration,

FLAG = 0 means normal termination.

1 means abnormal termination.

(We note that for either algorithm an abnormal

termination may have been indicated even though

the approximation was close to the solution.)

132

Table 4

Resul ts of Tests with Standard S t a r t s

//

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

NITER

21

23

29

25

8

9

138

186

14

10

38

39

34

36

527

47

8

8

9

9

27

28

66

33

8

4

11

14

6

7

NFEV

28

29

30

25

10

10

239

344

18

10

48

50

43

44

1000

382

10

10

11

71

28

29

67

33

16

1354

12

33

7

8

t
g g

5 X lo"^^

6 X 10"^^

5 X lO"^^

5 X 10-21

0.0

IX 10-^^

1 X lo"^

2 X lO"^^

2 X 10"^'

4 X lo"^^

2 X 10-^^

1 X 10-̂ '̂
-23

2 X 10
-30

1 X 10

6 X 10"^
-24

4 X 10

2 X lO-"̂ ^

2 X 10-^^
-20

9 X 10

2 X 10-^^

3 X 10-'°
-20

1 X 10

2 X lo"^'

1 X 10-'^

9 X lo"'^

4 X 10"^

1 X 10-"

1 X 10-'^

0,0
-So

9 X 10

POSDEF

T

T

T

T

T

T

T

F

T

T

T

T

T

T

T

NEGCNT

0

0

0

2

2

1

0

527

1

2

0

0

3

0

1

FLAG

0

0

0

0

0

0

0

1

0

1

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

133

The algorithm presented in Chapter IV requires the calculation

of the Hessian from an analytic expression in order for the underlying

theory to be valid. However, one may want to use the algorithm with a

finite difference approximation to the Hessian, In Table 5 the results

of using such an approximation on problems (3.1) - (3.15) are presented.

The headings in this table are as in Table 4. Again we use the standard

starts for x . It should be noted that except for Powell's Badly Scaled

Function (3.4), there is little difference between the behavior of the

algorithm with finite differences and with analytic derivatives.

Table 5

Results from Using Finite Differences

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

NITER

21

29

8

553

14

38

34

561

11

9

34

66

8

11

6

NFEV

28

30

10

1000

18

48

43

1000

23

11

44

67

16

12

7

t
g g

1 X 10-18

7 X 10-2^

3 X IQ-^^

1 X 10^

3 X 10-2^

5 X 10-1^
-91

3 X 10 ̂ ^
8 X 10-^

2 X lo"!^

3 X lo"!^

2 X 10"!^

2 X IQ-^^

3 X lo"!'̂

2 X 10"^°

6 X 10-3°

POSDEF

T

T

T

F

T

T

T

F

T

T

T

T

T

T

T

NEGCNT

0

0

0

546

2

1

0

561

2

2

16

0

3

1

1

FLAG

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

The use of standard starting points on these test examples does

not fully reveal the performance of this algorithm. Some of the

134

standard starts are in regions such that little or no negative curvature

is encountered during the Iteration. In order to demonstrate how the

algorithm performs when many indefinite points are encountered, we

include results of the algorithm on problems (3.5), (3.8), (3.9), and

(3.13) with random starting points. These results are presented in

tables 6, 7, 8 and 9. In each table the results from ten random starting

points are given. For each point there are two entries. The first is

from the algorithm presented in Chapter IV and the second is the result

from Gill and Murray's algorithm on the same problem.

Table 6

Box's Function

1

2

3

4

5

6

7

8

9

10

NITER

25

24

16

36

14

27

20

20

26

37

22

26

20

19

18

9

16

14

12

33

NFEV

36

140

17

97

15

70

26

20

42

118

41

64

33

26

22

9

20

14

16

95

t
g g

1 X 10"^^

4 X IQ-^

2 X IQ-̂ l

1 X IQ-̂ "̂

3 X IQ-̂ l

5 X 10-2'̂

1 X 10-20

6 X IQ-^^

0,0

5 X 10-2^

1 X 10-32

1 X 10-22

1 X 10-22

1 X 10-2'̂

4 X 10-28

2 X 10-21

5 X 10-25

1 X 10-28

8 X 10-32

2 X 10-2 5

POSDEF

T

T

T

T

T

T

T

T

T

T

NEGCNT

21

3

3

2

22

17

18

3

1

7

FLAG

0

1

0

1

0

1

0

0

0

1

0

1

0

0

0

0

0

0

0

1

Table 7

EXP 6

135

1

2

3

4

5

6

7

8

9

10

NITER

485

2

6

135

25

79

202

108

8

98

40

128

335

129

98

88

865

112

810

108

NFEV

730

81

6

198

25

147

276

353

71

418

431

253

543

227

138

474

1000

332

1000

358

t
g g

2 X 10-21

overflow

6 X 10^

4 X IQ-^

2 X 10^
-2 3 2 X 10 ̂"̂

5 X 10-28

2 X 10

6 X lo2

3

4 X 10-20

4 X 10-^

2 X lo"!^

9 X 10-**
-19

5 X 10 ̂ "̂

4

2 X 10-'*

2 X IQ-l

5 X lo"^

1 X 10-8

POSDEF

T

F

F

T

F

T

T

T

F

F

NEGCNT

41

6

25

200

8

38

59

32

865

810

FLAG

0

1

1

1

1

0

0

1

1

1

0

1

0

1

0

1

1

1

1

1

136

Table 8

Gottfried's Function

//

1

2

3

4

5

6

7

8

9

10

NITER

26

27

18

19

12

14

21

1

19

1

13

1

25

25

21

1

15

1

14

1

NFEV

29

29

26

22

17

15

29

1001

27

1001

15

1001

27

26

25

1001

16

1001

16

1001

t
g g

2 X IQ-^^

2 >< 10

3 X 10-1°

5 X 10*2^

8 X 10"29

1 X 10-22

1 X 10-20

1 3
2 X 10^"*

5 X 10-20

2 X lol5

1 X 10-2^
12

9 X lo''̂
- 1 9 1 X 10 '•^

4 X 10-22

— ? 1
8 X 10 '̂^

2 X 1015

- 27
1 X 10

4 X 10 1^

1 X 10"26

3 X lol**

POSDEF

T

T

T

T

T

T

T

T

T

T

NEGCNT

3

3

3

6

8

3

2

4

2

3

FLAG

0

0

0

0

0

0

1

0

1

0

1

0

0

0

1

0

1

0

1

137

Table 9

Brown's Badly Scaled Problem

1

2

3

4

5

6

7

8

9

10

NITER

22

24

21

21

21

21

19

19

21

21

19

21

21

22

22

21

23

23

19

21

NFEV

43

105

43

89

40

91

45

81

40

90

42

95

41

99

41

101

44

111

36

97

t
g g

2 X 10-̂ *3

2 X 10-'*3

2 X 10-̂ *3

8 X 10-1^

2 X 10-̂ *3

4 X 10-12

2 X 10-^3

4 X iQ-i^

2 X 10-1^
-12

4 X 10 '^

2 X 10-^^

2 X 10-19

2 X IQ-l^

1 X 10*8

2 X 10-"+3

2 X IQ-^^

2 X IQ-l^

1 X 10-13

2 X IQ-l^

4 X lo-l't

POSDEF

T

T

T

T

T

T

T

T

T

T

NEGCNT

14

14

13

8

14

12

14

15

16

10

FLAG

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

138

Tests using random starts were made with the other functions as

well. However, with the exception of problems (3.5), (3.8), (3.9),

(3.10), and (3.13), the results shown in Table 4 were consistent with

results using random starts. On Beal's Function (3.10), the two algo

rithms behaved quite differently depending upon the starting point. The

problem exhibited a lot of negative curvature. However, one algorithm

would do much better than the other on one starting point, but the oppo

site situation would occur on another starting point.

We have compared these results with the results obtained by the

algorithm of Gill and Murray [11], and have found them to be competitive.

This is encouraging since the Gill and Murray algorithm has undergone a

thorough development and is one of the best codes available.

The results shown here Indicate that the method presented in

Chapter IV is promising. Further development is needed in the practical

problem areas discussed at the beginning of this section. However, the

evidence so far indicates that a fully developed algorithm has the

potential of being a reliable and efficient method for unconstrained

optimization.

Appendix Al

139

PATH 1 START
K = 1

ENTER 1x1

Update 1x1 Block

STOP

Update
the Kth
column.

K -E- K + 1

2x2 GO TO
PATH 3

Join the next
1x1 block to
form a 2x2

GO TO PATH 1
PATH 2

ENTER 2x2

Update column
K and K + 1
K -̂ K + 2

Pivot and
factor

obtaining two
ixl blocks

GO TO PATH 1

Update the
Kth column.
K -s- K + 1

GO TO PATH 2
GO TO ENTER 1x1

140

PATH 3

L
Do a

1x1 pivot
and
factor

I
Update
the k-th
column.

K -i- K + 1

I
GO TO ENTER 2x2

I
Join

the next
2x2 block

to form a 3x3

1
Do a

2x2 pivot
and
factor

I
Update

the K-th and
K+l-st columns

K -<- K + 2

I
GO TO ENTER 1x1

Appendix A2

.SUSPOUTINP SYMU?0(A,NLD,N, SIGNA,Z,CHANCE,Q,W) 1 0 0 .
n o u n t e p f t F c i S K H S I G M A l o o . i
JMTEGER N.NLD 1 0 0 . 2
nnufxuE PRECis ic -1 A C N L D . ^ I I z (N) , C H A N G E (N) , W (N) 1 0 0 . 3
INTEGER 0(NJ 100 .A

[* « • • « « « * * •sf: * « • « * » « « « * * * * * * » > ! ' * * • « * • * * * * * * * * « « * * * * * » * 1 0 0 . 5
C 1 0 0 . 6
C THIS SUBRGOTINP COMPUTES THE UPDATED SYMMETRIC FAGTfRIZATION 1 0 0 . 7
C PF AN N X N SYK,^FTRIC MATRIX A FOLLOWEC BY A RANK CNF UPDATE 1 0 0 . 8
C OF THE FORM A + SIOMA*ZZ' . IT IS ASSUMED THAT 1 0 0 . 0
C 1 0 1 . •
C 0A0« = MCM« 1 0 1 . 1
C 1 0 1 . 2
C WITH D BLOCK TIAGONAl CONSISTING OF 1 X 1 AND 2 X 2 DIAGONAL 1 0 1 . 3
C RLOCKSi AND M OCCUPYING THF LOW^R TRIANGLE CF THE PHYSICAL 1 0 1 . 4
C Ai^RAY A. THE OLOCK STRUCTURE OF D IS INDICATED EY THE 1 0 1 . 5
C ARRAY CHANGE. 1 0 1 . 6
C CHANGE(K) = 1 IF ENTRY K IS A 1 X 1 BLOCK 1 0 1 . 7
C = 2 IF ENTRY K IS THE START OF A 2 X 2 bLTCK 1 0 1 . 8
C = THF DETERMINANT OF THE 2 X 2 BLOCK WHICH 1 0 1 . 9
C STARTS AT ENTt-Y K - 1 . 1 0 2 .
C THE ARRAYS A .O .P IVUT ARF OVERWRITTEN WITH THE UPDATED 1 0 2 . 1
C FACTORIZATION 1 0 2 . 2
C 1 0 2 . 3
C MDM' = Q(A <• S I G M A * Z Z ') C ' 1 0 2 . 4
C 1 0 2 . 5
C THF UPPER TRIA.vr.LE CF THE PHYSICAL ARRAY A I S NOT ALTERED 1 0 2 . 6
C IN ANY MANNER. THUS A COPY OF THE ORIGINAL MATRIX A MAY BE 1 0 2 . 7
C STORED IN THF UPPER TPUNf lLE CF A I F A HAS CIMENSIONS 1 0 2 . 8
C N X N t l . THE VECTOR Z IS NCT ALTERED. 1 0 2 . 9
C » 1 0 3 .
C 1 0 3 . 1
C******:!i******** 1 0 3 . 2
C 1 0 3 . 3
C A IS A RECTANGULAR AHRAY WHOSE LEADING DIMENSION IS 1 0 3 . 4
C NLD. THIS A R R A Y ' I S ASSUMED TO CONTAIN THE SYMMETRIC 1 0 3 . 5
C MATRIX A IN FACTORED FCRM AS DESCPI?ED A30VE. THF 1 0 3 . 6
C LOWER TRIANGLE GF A CONTAINS THE MATKIX M. THE BLOCK 1 0 3 . 7
C DIAGONAL MATRIX 0 IS STORED IN THF CORRESPONDING 1 0 3 . 6
C BLOCK DIAGONAL LOCATICNS OF THE ARRAY A . THIS IS 1 0 3 . 9
C POSSIbLt SINCE IF 0 (1 , J) (I . N E . J) IS r.CNZERO 1 0 4 .
C THEN M (I , J I IS ZERO. THEREFORE, THESE LOCATIONS 1 0 4 . 1
C AS WELL AS THE DIAGONAL ENTRIES OF A MAY BF USED TO 1 0 4 . 2
C TO STORE D. 1 0 4 . 3
C 1 0 4 . 4
C NLD THE LEADING DUIENSION CF THE ARRAY A . 1 0 4 . 5
C 1C4 .6
C N THE DIMENSION OF THF MATRIX A . 1 0 4 . 7
C 1 0 4 . 8
C S I G ^ * THE SCALAR DESCRIBED ABOVE. 1 0 4 . 9

141

c
c

N

SIG^*

Z

CHANGE

THE

THE

THE

THE

c

c

DOUBLE PRECISION ALFA,Dl1,D21,331,022,032,033,Bl,B2,B3,Ul.UO,
L T,Tl,T2,nET,Ll,L2
INTEGER 01,02,03,I,10,I1,K1,K,KM1,K

ALFA=(1 .0D0 + D S 0 P T (1 7 . 0 D 0 ») / B . 0 0 0

1 0 5 .
C Z THE N DIMENSIONAL VECTCR IN THE UPDATING FORMULA. 1 0 5 . 1

1 0 5 . 2
C CHANGE THE N DIMENSIONAL ARRAY WHICH INDICATES THE BLOCK 1 0 5 . 3
C STRUCTURE OF THE BLOCK DIAGONAL MATRIX D. THE 1 0 5 . 4
C CONTENTS OF THE ARRAY CHANGE ARE DESCRIBED ABOVE. 1 0 5 . 5

1 0 5 . 6
C 0 AN N DIMENSIONAL INTEGER ARRAY THAT INDICATES THE 105.7
C PIVOTING NECESSARY TO OBTAIN THE FACTORIZATION. 105.8

105.9
C H AN N DIMENSIONAL LINEAR WORK ARRAY. 1 0 6 .
r 1 0 6 . 1

1 0 6 . 2

c***.*******.**"********* [l l ' l
DOUBLE PRECISION H A X N U M I O A ' S
DOUBLE PRECISION A L F A , D l 1 . D 2 1 , D 3 1 , 0 2 2 , 0 3 2 , 0 3 3 , B l , B 2 , B 3 , U l . U O . 1 0 6 . 5

I T , T l , T 2 , n E T , L l , L 2 . i n / ^ * 7
INTEGER 0 1 , 0 2 , 0 3 , I , 1 0 , I 1 , K 1 , K , K M 1 , K P 1 , K P 2 , K ? 3 , J 1 " ^ - ' 1 0 6 . 8

1 0 6 . 9

142

C

r o 100 J=1 ,N 1 0 7 .
H (J) = Z (0 (J)) 1 0 7 . 1

100 rClNTINUE 1 0 7 . 2
K . l 1 0 7 - 3

101 COMINUF 1 0 7 . 4
C 1 0 7 . 5
C THE PROCESSING =̂ = GINS HERE 1 0 7 . t

1 0 7 . 7
KP1 = K«-1 1 0 7 . 6
KP2 = K*2 107.*;'
I F (1 K . L T . N) . A N D . (C H A N G E C K P l) . L T . O)) GO TO 115 1 0 8 .

C 1 0 8 . 1
C THE NFXT BLOCK IS A 1 X 1 BLCiCK 1 0 9 . 2
C I G « . 3

T = V>IK) 1 0 8 . ' .
B1=SIGMA*T 1 0 8 . 5
C11=A(K ,K I *31 *T 1 0 8 . 6
IFCKPl . G T . N) GO TO 202 1 0 8 . 7
DO 102 J=KP1,N 1 0 8 . 6

W (J) » W (J) - A (J , K I * T 1 0 8 . 9
102 CONTINUE 1 0 9 .
202 CONTINUE 1 0 9 . 1
103 CONTINUE 1 0 0 . 2

C I C 9 . 3
C ENTER I X 1 IC^ .A
C 1 0 V . 5

I F I K . L T . N) GO TO 104 1 0 9 . f
A(K,K»=011 1 0 9 . 7

C 1 0 9 . 0
C THE DECOMPOSITION IS COMPLETE IF K=N 1 0 9 . 9
C 1 1 0 .

RETURN I 1 0 . 1
C 1 1 0 . 2

104 U1=0AF«S(D11) 1 1 0 . 3
U0=DABS(B1) 1 1 0 . 4
I F K U l . L T . {AL'=A»U0)) .AND. (Ul *DABS I S IGMA) . L E . ALFA«U0»U0)1 1 1 0 . 5

1 GO TO 106 1 1 0 . 6
SIGMA=SIGMA-31*B1/D1I 1 1 0 . 7
Bl = 8 1 / C l l 1 1 0 . 6
A(K,KI=D11 1 1 0 . 9

C 1 1 1 .
C UPDATE THE K-TH COLUMN OF M. lll.l
C 111.2

IF (KP1 .GT. N) GO TO 205 1 1 1 . 3
DO 105 J=KPl ,N 1 1 1 . 4

A (J , K) « A (J . K) * B 1 * W (J » 1 1 1 . 5
105 CONTINUE 1 1 1 . 6
205 CONTINUE 1 1 1 . 7

K'KPl 1 1 1 . 6
GO TO 101 1 1 1 . 9

C l U .
106 I'={(CHANGE(KP2) . L F . 0) . A N D . (K P 2 . L E . N) 1 GO TO 108 1 1 2 . 1

C 1 1 2 . 2
C A 2 X 2 BLOCK IS FORMED BY COMBINING THE NEXT 1 X 1 BLOCK 1 1 2 . 3
C WITH BLOCK K. 1 1 2 . 4
C 1 1 2 . 5

B2=W(KP1J 1 1 2 . 6
T=B2 1 1 2 . 7
C21=B2*B1 1 1 2 . 8
B2=SIGMA*92 1 1 2 . 9
0 2 2 » A (K P l , K P l) f 0 2 * T 1 1 3 .
L1='A(KP1,KI 1 1 3 . 1
022=022+11*021 1 1 3 . 2
B2=B2+L1*B1 1 1 3 . 3
0 2 1 « 0 2 H - L I * D 1 1 1 1 3 . 4
C 2 2 - 0 2 2 t L l * 0 2 l 1 1 3 . 5

C 1 1 3 . 6
C INCLUDE INFORMATION FROM THE (K + U - S T COLUMN OF M. 1 1 3 . 7
C 1 1 3 . 8

IF (KP2 .GT. NJ GO TO 207 1 1 3 . 9

143

c

c

00 107 J=KP2,N 1 1 4 .
W { J) = W (J | - ' V (J , K P 1) * T 1 1 4 . 1
A (J , K » = A (J , K) - A (J , K P l) * l l 1 1 4 . 2

107 CONTINUE 1 1 4 . 3
207 CPNTINUE 1 1 4 . 4

GO TO 117 1 1 4 . 5
108 CONTINUE 114 .<

1 1 4 . 7
C I F THIS PORTION OF THE CODE IS REACHED WE ARE IN Tpc CASE OF A 1 1 4 . 8
C 1 X 1 <;iNGULAR BLOCK FOLLOWED BY A 2 X 2 BLOCK. THIS 2 % Z 1 1 4 . 9
C BLOCK IS JOINED TO THF 1 X 1 BLOCK TO FORM A 3 X 3 MATRIX D. 1 1 5 .

1 1 5 . 1
T1 = W(KPU 1 1 5 . 2
T2=W(KP2) 1 1 5 . 3
B2=SIGMA*Tl 1 1 5 . 4
B3=SIGMA*T2 1 1 5 . 5
D 2 2 = A (K P l , K P l) f b 2 * T l 1 1 5 . 6
D32 = A (K P 2 , K P l) « - h 3 * T l 1 1 5 . 7
0 3 3 = A (K P 2 , K P 2) + 3 3 * T 2 1 1 5 . 8
021=T1*B1 1 1 5 . 9
D31=T2*91 1 1 6 .
L1=A(KP1,KJ 1 1 6 . 1
L2=AIKP2,K) 1 1 6 . 2
T=L2*D11 1 1 6 . 3
C33=D33*L2i ' (2 .0D0t=D31 + T) 1 1 6 . 4
D 3 1 = D 3 U T 1 1 6 . 5
C32=D32+L1*D31+L2*D21 1 1 6 . 6
T=L1*011 1 1 6 . 7
D 2 2 = D 2 2 + L l * (2 . 0 D O * D 2 1 * T J 1 1 6 . 8
C21=>021+T 1 1 6 . 9
B2=B2<-Ll*ai 1 1 7 .
B3=B3<-L2*B1 1 1 7 . 1
KP3=K+3 1 1 7 . 2

C 1 1 7 . 3
C INCLUDE INFORMATION FROM THE (K + 1) - S T ANO (K«-2)-ND COLUMNS 1 1 7 . 4
C OF M. 1 1 7 . 5
C 1 1 7 . 6

IP (KP3 .GT .M) GO TO 209 1 1 7 . 7
DO 109 J=KP3,N 1 1 7 . 8

W (J I = W (J » - (A (J , K P 1) * T 1 + A (J , K P 2) * T 2) 1 1 7 . 9
A (J , K) = A (J , K) - (A (J , K P 1) * L 1 + A (J , K P 2) * L 2) 1 1 8 .

109 CONTINUE 1 1 8 . 1
209 CONTINUE 1 1 8 . 2

U 1 = M A X N U M (D 1 1 , 0 2 2 . 0 3 3 , I I) 1 1 8 . 3
U0=MAXMUM(D21,031 ,D32 . I0) 1 1 8 . 4
IF (U l . L T . (A L F A * U 0) 1 GO TO 112 1 1 8 . 5

C

C
C
C

1 1 8 . 6
C A 1 X 1 PIVOT WILL BE USED 1 1 8 . 7
r 1 1 8 . 8

C l = l 1 1 8 . 9
02=2 1 1 9 .

CALL P I V l X K D l l , 0 2 1 , 0 3 1 , 0 2 2 , 0 3 2 , D 3 3 , B l , B 2 , B 3 . C H A N G E , Q l , 1 1 9 . 2

1 Q 2 , 0 3 , I 1 , K , N) H o ' i
K1=K-1+01 \\l'\
SIGHA=$IGMA-011*B1*61 J . „ * :

1 1 9 . 6
UPDATE THE K-TH COLUMN OF M \YL'\

I F (K P 3 . G T . N) GO TO 210 J^rt*^
00 n o J=KP3,N , , n ,

T = A I J , K) 1 | 0 - 1
A (J , K) = A (J , K 1) , , f t ,
AC J K1)=T l.ZU«3
A (J ! K) = A (J , K) + D 2 1 » A (J , K P 1) + D 3 1 * A (J , K P 2 J * B 1 * W (J J 1 2 0 . 4

110 CONTINUE 1 2 0 ' 5
210 CONTINUE \Vn%

K M l - K - 1 l ? 0 . f

144

c 12".e
C INTERCHANGE TH"̂ COKkES POND I NG ROWS OF M. 120.9

r . 1 2 1 .

IF (KMl .LT. I) GO TC 211 121.1
CO 111 J=1,KM1 121.2

T « A (K , J) 1 2 1 . 3
A (K , J) = A (K 1 , J) 1 2 1 . 4
A (K 1 , J) = T 1 2 1 . 5

111 CONTINUE I21.t
211 CONTINUE 121.7

I = rj(K) 121.8
Q(K)=0(K1) 121.9
Q(K1)=I 12?-

C 122.1
A(K,K)=D11 122.2
A(KP1,K)=D21 122.3
A(KP2,K)=D31 122.4
C11='D?2 122.5
C22'D33 122.6
C21=D32 122.7
P1=B2 122.8
B2=B3 122.9
K=KP1 123.
KP1=KP2 123.1
KP2=KP2+1 123.2
GO TO 117 123.3

112 CONTINUE 123.4
C 123.5
C A 2 X 2 PIVOT WILL BE USED 123.6
C 123.7

01=1 123.8
02=2 123.9
03=3 124.
CALL P I V 2 X 2 (0 1 1 , 0 2 1 , 0 3 1 , 0 2 2 , 0 3 2 , 0 3 3 , B 1 , B 2 , B 3 , C H A N G E , S I G M 4 , C 1 , 1 2 4 . 1

1 0 2 , 0 3 , 1 0 , K , N) 1 2 4 . 2
K1=K-1+Q1 1 2 4 . 3
K2 = K - l + 0 2 1 2 4 . < ,
I = 0 (K) 12A.5
Q(K)=C(K1) 1 2 4 . 6
C (K 1) = I 1 2 4 . 7
l = 3 t K P l) 1 2 4 . 8
0 (K P l) = 0 (K 2) 1 2 4 . 9
Q (K 2) = I 1 2 5 .

C 1 2 5 . 1
C UPDATE THE K-TH AND (K+1»-ST COLUMNS OF ».. 1 2 5 . 2
C 1 2 5 . 3

IF {KP3 .GT.N) GO TO 2 1 3 1 2 5 . 4
00 113 J=KP3,N 125.*^

T » A (J , K) 1 2 5 . 6
A (J , K) = A (J , K 1) 1 2 5 . 7
A (J . K 1) = T 1 2 5 . 8
T=A(J ,KP1) 1 2 5 . 9
A (J , K P 1) = A (J , K 2) 1 2 6 .
A (J .K2)=T 1 2 6 . 1
A (J , K) = A < J , K) + D 3 1 « A (J , k P 2) f P l * W (J) 1 2 6 . 2
A { J , K P 1) = A (J , K P 1) * D 3 2 * A (J , K P 2) + 3 2 * W (J) 1 2 6 . 3

113 CONTINUE 1 2 6 . 4
213 CONTINUE 1 2 6 . 5

E 126.6
C INTERCHANGE THE CORRESPr.NDING ROWS OF M. 1 2 6 . 7
*- 1 2 6 . 8

KM1=K-1 1 2 6 . 9
on 114 J=1,KM1 127

T=A(K .J) 1 2 7 ; i
A (K , J) = A (K 1 , J) 127 2
A (K 1 , J) « T 1 2 7 * 3
T = A (K P l , J) 1 2 7 * 4
A (K P 1 , J) - A (K 2 , J) 1 2 7 * 5
A (K 2 , J) = T 1 2 7 * 6

114 CONTINUE 1 2 7 * 7

145

A { K , K) = 0 1 1 1 2 7 . 8
A (K P l , K) = n 2 1 1 2 7 . 9
A (K P l , K P l) = D 2 2 1 2 8 .
A (K P 2 , K) = 0 3 l 1 2 8 . 1
A (K P 2 , K P l) = n 3 2 1 2 8 . 2
011=033 1 2 8 . 3
B1=B3 1 2 8 . 4
K=KP2 1 2 8 . 5
KP1=K+1 1 2 8 . 6
KP2=K+2 1 2 8 . 7
GO TO 103 1 2 8 . 8

115 CONTINUE 1 2 8 . 9
C 1 2 9 .
C THE DIAGONAL HLOCK BEGINNING AT ENTRY K IS 2 X 2 . THF UPDATED 1 2 9 . 1
C DIAGONAL BLOCK D IS RtOUIREP TO SATISFY 1 2 9 . 2
C 1 2 9 . 3
C ABS(D21) iALFA . G T . M A X (A 9 S (0 H) , A B S (D 2 2)) . 1 2 9 . 4
C 1 2 9 . 5
C IF THIS IS NOT SATISFIED THE BLOCK IS SPLIT INTO TWC 1 X 1 BLOCKS. 1 2 9 . 6
C 1 2 9 . 7
C 1 2 9 . 8

T1=W(K) 1 2 9 . 9
T2=W(KP1) 1 3 0 .
B1^SIGMA*W(K) 1 3 0 . 1
P2=SIGMA*W(KPl) 1 3 0 . 2
D11=A{K,K)+B1*W{K) 1 3 0 . 3
C21=A(KP1,K)+B2*W(K) 1 3 0 . 4
D22=A(KP1,KP1) *B2*W(KP1) 1 3 0 . 5
IF (K P l . G E . N) GO TO 117 1 3 0 . 6
CO 116 J=KP2,N 1 3 0 . 7

W (J) = v (J | - (A (J , K) * T 1 + A (J , K P 1) * T 2 J 1 3 0 . 8
116 CCNTINUE 1 3 0 . 9

C 1 3 1 -
117 CCNTINUE 1^1*1

C

c
C
C

1 3 1 . 2

1 3 2 . 5
1 3 2 . 6
1 3 2 . 7
1 3 2 . 8

C ENTER 2 X 2 \ l \ ' ^
C THE 2 X 2 BLOCK WILL BE PROCESSED 1 3 1 . 4
C 1 3 1 . 5

T l = P.000 ^1]'^
U l = M A X N U » « l D l l , D ? 2 , T l , n) 1 3 1 . 7
IF (U1 .CE . (ALFA*DA8S(D21))) GO TO 119 1 3 1 . 8

1 3 1 • 7

A 2 X 2 PIVOT WILL BE USED 132*1

CET=011*D22-D21*D21 \\l'l
CHANGE{K)=2 I,,'A
CHANGEIKP1)=DET :lz,'l
A(K,K)=D11
A(KP1,K)=^21
A(KPl,Kf'l) = D22
IF (KPl.EQ. N) RETURN
Tl=(D22*Bl-a2l*B2)/D£T i,,
T2=(-D?l*31+Dll*a2)/DET J"*
IF (KP2 .GT. N» GO TO 218 At'i

C UPDATE THE K-TH AND (K+D-ST COLUMNS CF M. |33.3
_ 1 33 •*»

DO 118 J=KP2,N 133.5
T = W(J)
A(J,K)=A(J,K)+T1*T
AtJ,KPl)=A{J,KPl)*T2*T \l^-°

118 CONTINUE ,"•
218 CONTINUE î Z'i

S1GMA=SIGMA-(TI*B1+T2*B2) iJt.i
K=KP2
GO TO 101

119 CONTINUE

1 3 3 . 6
1 3 3 . 7

1 3 4 . 2
1 3 4 . 3
1 3 4 . 4

146

c
r
c
c
c
c

120
220

121
221

C
122

C
C
C

c
c
c

123
223

A 1 X 1 P I V O T WILI af USfD

IF (I l.NE.?) GO TG 122

INTERCHANGE THF rtOWS ANO C O L U K N S CF M IF N E C E S S A R Y

T=Dll •
0 1 1 = 0 2 2
0?2 = T
T = Bl
l«l = P2
e2=T
I=Q(K)

• C(K)=Q(KP1)
0(KP1)=I
IF (KP2.GT.r41 GO TO 220
DO 120 J=KP2,N

T=A(J,K)
A(J ,K)=A{J.KPl)
A(J,KP1)=T

CONTINUE
CONTINUE
KM1=K-1
IF (KMl .LT. I) GC TC 221
on 121 J=l,KMl

T=A(K,J)
A(K,J)=4(KP1,J)
A(KP1,J)=T

CONTINUE
CONTINUE

CONT H U E

PROCESS THE TWO 1 X 1 BLOCKS

CHANGE(K)=l
CHANGE(KP1)=1
022=D22-(D21*021)/ril
021=021/011
e2=D2-61*D21
81=01/011
IF (KP2.GT.N) GO TO 223

UPDATE THE K-TH COLUMN OF M.

00 123 J = KP2,\'
A(J,K)=A(J,K)+C21*A(J,KP1)+R1»W(J)

CONTINUE
CONTINUE
A(K,K)=011
A(KPl,K)=D21
SIGMA»SIGMA-ai«Cll*Bl
ril=D22
B1 = B2
K = KP1
KPUKP2
KP2 = K+-2
GO TO 103

END

1 3 4 . 5
1 3 4 . 6
1 3 4 . 7
1 3 4 . 8
1 3 4 . 9
1 3 5 .
1 3 5 . 1
1 3 5 . 2
1 3 5 . 3
1 3 S . 4
1 3 5 . 5
1 3 5 . 6
1 3 5 . 7
1 3 5 . 8
1 3 5 . 9
1 3 6 .
1 3 6 . 1
1 3 6 . 2
1 3 6 . 3
1 3 6 . 4
1 3 6 . 5
1 3 t . e
1 2 6 . 7
1 3 6 . b
1 3 6 . 9
1 3 7 .
1 3 7 . 1
1 3 7 . 2
1 3 7 . 3
1 3 7 . A
1 3 7 . 5
1 3 7 . 6
1 3 7 . 7
1 3 7 . 8
1 3 7 . 9
1 3 6 .
1 3 8 . 1
1 3 8 . 2
1 3 8 . 3
1 3 8 . 4
1 3 6 . 5
1 3 8 . 6
1 3 3 . 7
1 3 8 . 6
1 3 6 . 9
1 3 9 .
1 3 9 . 1
1 3 9 . 2
1 3 9 . 3
139 .< .
1 3 9 . 5
1 3 9 . 6
13<5.7
1 3 9 . 8
1 3 9 . 9
1 4 0 .
1 4 0 . 1
1 4 0 - 2
1 4 0 . 3
1 4 0 . 4

147

140.5
SUBROUTINE PIVIX1(011,C21,D31,022.0 32,C33,Bl,B2.B3,CHANGR, 140.6

1 Ql,fv2,03, I1,K,N) 140.7
DOUBLE PRECISION Dl 1 ,121 ,03 1 ,1:22 , 032,033, Bl, B2 , B3 140.8
INTEGER 01,02,03, I l,K,r' 140.9
DOUBLE PPrCISION CHANCf(N) 141.

C*«************«i«;»*******V *:(:•**«-•«»******************•*:(;<•«* **•*«*«****« 141,1
C 141.2
C 141.3
C THIS SUPfOUTINE PEP-FnpMS A 1 X 1 riVOT. GIVEN A 3 X 3 141.4
C SYMMETRIC MATRIX D=(C!J) WHICH SATISFIES THE 1 X 1 PIVOT 141.5
C CPITPRIA WITH D(11,11) AS THF PIVOT ELEMENT. THE 3 X 3 MATRIX 0 141.6
C IS PERMUTED TO BRING L d l . I)) TO THE (1,1) POSITION AND 141.7
C THEN THE FIRST STEP OF THE FACTOPIZATION IS DONE IN PLACE. 141.6
C 141.*?
C 142.
C * * * * * * « * « * * * * * * < C * * * * * ^ * < r « < , < , ^ « l j l ^ 4 , t C * * * * * « « * * * * * • ! : * « * * « * * * * * * * * * * * * * « - * . ' > (: * 1 4 2 . 1

C 1 4 2 . 2
DOUBLE PRECISION T 1 4 2 . 3
INTFGEk KP1,KP2 1 4 2 . 4
KP1=K+1 1 4 2 . 5
KP2=K*2 1 4 2 . t
GO TO (1 0 , 2 0 , 3 0) , I I 1 4 2 . 7

C 1 4 2 . 8
C THE MAX ELEMENT IS D22 1 4 2 . 9
C 1 4 3 .

2 0 T=C11 1 4 3 . 1
1 4 3 . 2
1 4 3 . 3
1 4 3 . 4
1 4 3 . 5
1 4 3 . 6
1 4 3 . 7
1 4 3 . 8
1 4 3 . 9
1 4 4 .
1 4 4 . 1
1 4 4 . 2
1 4 4 . 3
1 4 4 . 4
1 4 4 . 5

C THE MAX ELEMENT IS 033 \lt'.7
C 144.8

30 T=C11 l^^.q
011=033 1^5.
D33=T 1^5.1

C 145.2
T=C21 1^5.3
021 = 032 1^5.,,
D32=T 1,^5.5

C 145.6
T=B1 lii5.7
B1=B3 145.8
B3=T ii,s.9

C 146.
01=3 146.1
03=1 146.2

C 146.3
C THE MAX ELEMENT IS Dll 146.4
C 146.5

10 D22=D22-(D21«D21)/D11 1A6.6
D32=C32-(D31«D21)/011 146.7
D33=033-(D31*D31)/D11 146.8
01=61/011 146.9
B2=B2-B1*D21 1^7.
B3=B3-B1*D31 147.1
021=C21/011 147.2
031=C3l/Dll 147.3
CHANGE(K)=1. 147 4
RETURN l^^'.j
ENO

T = C11
011=022
C22=T

T=r32
032=031
n3i=T

T=e2
B2 = 6l
B1 = T
Cl = 2
02 = 1

GO TO 10

148

SUBROUTINE P IV2X2 (Dl 1 , 02 I , D3 1 ,[>?2, 032 , 0 3 3 , 8 I ,8 2 , B3 ,CHANGE , S IGMA, 1 4 7 . 6
1 0 1 , Q 2 , 0 3 , I 0 , K , N) 1 4 7 . 7

Cnu^LS PRECISl'JiJ r i l , [. 2 1 , 0 2 2 „ D 3 1 , D 3 2 , D 3 3 , f l , b 2 , B 3 , S I C * ' A 1 4 7 . 6
INTEGER O l , O 2 , r j 3 , I 0 , K , N 1 4 7 . 9
nOUBLT PRECISION fHANGFIN) 1 4 8 .

C« * * » * « ') > * * * * « * * * • * * * * * * * * * * » » « « « * i t t * * * » * * t * * * * * * * * * » » * * « * * • » * * * • • * • * * * 1 4 8 . 1
C 1 4 8 . 2
C 1 4 8 . 3
C THIS SUBROUTINE PEFFOi^MS A 2 X 2 PIVCT O'J THc 3 X 3 MATRIX 1 4 8 . 4
C 0 = (D U) . THE MAXIMUM OFF-DIAGONAL ELEMENT IS b^OUfH^ TG THE 1 4 8 . 5
C (2 , 1) POSITION. ITS ORIGINAL LOCATION IS INDICATED EY THE 1 4 8 . 6
C VARIABLE 10: 1 4 8 . 7
C 1 4 ^ . 8
C 10=1 021 IS THE MAX ELEMENT 1 4 8 . 9
C 10=2 031 IS THE MAX fcLLMENT 1 4 9 .
C 10=3 032 IS THE MAX ELEMtNT 1 4 9 . 1
C 1 4 9 . 2
C THF FIRST STFP OF THE FACTOF IZATI ON cF THE MATRIX (D U) IS 1 4 9 . 3
C CARRIED OUT IN PLACE USING THE 2X2 PIVOT. 1 4 9 . 4
C 1 4 9 . 5
(; * * * * * * * * « « y < e * * * * * * * * * * < : * * « * * * * « * * * * « « * * « * * * * * * « * * * « • • * • * * • • * * * * * * * * * * * 1 4 9 . 6
C 1 4 9 . 7

INTEGER KP1,KP2 1 4 9 . 8
nCURLE PRECISION S.T.DET 149.9

C 1 5 0 .
KPl=KU 1 5 0 . 1
KP2=K+2 1 5 0 . 2
GO TO (10, 2 0 , 3 0) , 10 1-^0.3

20 CONTINUE 150.4

C 150. 5
C 031 IS THE MAX ELEMENT 1 5 0 . 6
C 1 5 0 . 7

T=C22 1 5 0 . 8
022=033 1 5 0 . 9
n33=T 1 5 1 .

C 1 5 1 . 1
T=D21 1 5 1 . 2
021=031 1 5 1 , 3
D31=T 1 5 1 . 4

^ 1 5 1 . 5
^ = •52 1 5 1 . 6
B2=B3 1 5 1 . 7
" = T 1 5 1 . 3

•- 1 5 1 . 9
02=3 1 5 2 .
03=2 152 1

GO TC 10 152*2
30 CONTINUE 152^3

C D32 IS THE MAX ELEMENT 1 5 2 ! 5
C

T = 011
Cll=022
022=033
D33=T

T=r21
C2 1=032
032=031
031=T

1 5 2 . 6
1 5 2 . 7
1 5 2 . 8
1 5 2 . 9
1 5 3 .
1 5 3 . 1
1 5 3 . 2
1 5 3 . 3
1 5 3 . 4
1 5 3 . 5
1 5 3 . 6
1 5 3 . 7

T=B1
^1=^2
B2=B3 5 3 . 8
B3=T I 3 i . v

1 5 4 .
01 = 2 l ^ ' ' - !
C2.3 1 5 4 . 2
03=1 1 5 * . 3

10 CONTINUE .l^^**
I 5 4 . 5

C 1 5 4 . 6
C n21 IS THE f'AX ELEMENT 1 5 4 . 7
C THF 2 X 2 PIVOT IS DONF HERE 1 5 4 . 8
C 1 5 4 . 9

n = T = C l l ' = D 2 2 - C 2 1 « T 2 1 1 5 5 .
T = (0 2 2 * 0 3 1 - 0 2 1 « O i 2) / 0 E T 1 5 5 . 1
S = (- C 2 ' l * 0 3 1 + C l 1*0 32) /OFT 1 5 5 . 2
B3 = 8 3 - (T * I U + S«B2) 1 5 5 . 3
n33 = n 3 3 - (T * C ; 3 1 + S*D32) 1 5 5 . 4
D31=T 1 5 5 . 5
^"32=5 1 5 5 . 6
T = (0 2 2 * P 1 - 0 2 1 * P 2) / D E T 1 5 5 . 7
S = (- C 2 1 * B 1 + D 1 1 < B 2) / D E T 1 5 5 . 8
S IGMA=SIGHA- (T*B1+S*B2) 1 5 5 . 9
B1=T 1 5 6 .
R2=S 1 5 6 . 1
CHANGE(K)=2 1 5 6 . 2
CHANGE(KP1)=DET 1 5 6 . 3
rHANGF(KP2) = 1 1 5 6 . 4
RETURN 1 5 6 . 5
END 1 5 6 . 6

DOUBLE PRECISION FUNCTION MAXNUMIA ,B ,C , I) 1 5 6 . 7
DCU°LP PRECISION A , B , C 1 5 6 . 8
INTEGER I 1 5 6 . 9

(^ * * * * * i > ' . i;i]^>!i4«:itc : « * * * * * * « * * * * * : ^ * * « 4 : i | s * : (r A * * * : (« * * * « * * « * * « * « * < : » * * * * * * * » * * * « * * « . « 1 5 7 .

C 1 5 7 . 1
C THIS FUNCTION FINDS THE MAXIMUM OF THE ABSOLUTE VALUFS OF A ,B ,C 1 5 7 . 2
C AND INDICATES WHICH Of THE VALUES IS SELECTED EY SETTING 1 5 7 . 3
C I = 1 . 2 , 3 RESPECTIVELY. 1 5 7 . 4
C 1 5 7 . 5
£ * « * * « * * * * * * * * * « * * * * * * * * * * * * * * * * « * * * * * * * * * * * » * * « 1 5 7 . 6

D0U3LF PRECISION S,T 1 5 7 . 7
1=1 157 .8
T=DABS(A) 1 5 7 . 9
S=CABS(B) 1 5 8 .
IF (S . L E . T) GO TO 10 1 5 8 . 1

T=S 1 5 6 . 2
1=2 1 5 8 . 3

10 CONTINUE 1 5 8 . 4
S=CABS{C) 1 5 8 . 5
I F (S . L E . T) GO TO 20 1 5 6 . 6

T=S 1 5 8 . 7
1=3 1 5 8 . 8

20 CONTINUE 1 5 8 . 9
MAXNUM=T 1 5 9 .

RETURN 1 5 9 . 1
ENO 1 5 9 . 2

150

SUGRCUTINE SOLVE! A, f.LD , N , CHA NGE , 0 , X , I F A I L)
INT=GF
DOUHLf
INTEGE

(-*********<:<:
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c*
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

THIS *:

R N .NLD, IFA IL
PRt-CISinM A(M r, ,N) ,X(N') .CHANGE (M)

P Q(N)
X. i | - *« *« * * * « • * * * • . • * * < . * • • * * • * * * • • * * * * • • • * • * * * * « - • * • * « * • • » • • • * • *

UOROUTINE COMPUTES THE SOLUTION TO AX = B.

THE MATRIX A IS ASSUMED TO BE IN THE FACTORED FORM

WHERE

OAQ« = MDM'

M IS eLOCK UNIT LO-ER TRIANGULAR ANP 0 IS BLOCK
DIAGONAL WITH 1X1 A«,'D 2X2 DIAGONAL BLOCKS. IT IS
ASSUMED THAT M, 0 APE CUTPUT FROM THt P Q U T I N E SYMIJPC
AND THAT THAT THESE ARRAYS ARE STCPFn IN THE LCrlEP
TRIAN'G
RIGHT

LE OF A. ON INPUT THF AkPAY X CONTAINS THF
HAND SIDE B AND CN OUTPUT X CONTAINS THE

SOLUTION VICTOR. IFAIL = 1 IF THE SYSTEM IS
SINGULAR (NO SOLUTION Mi THIS CASE) OTHERWISE I F A I L
IS RETURNED WITH THE VALUE 0 (A SOLUTION WAS O B T A I N E D .

* * * * * * * f t * *

A

NLD

N

CHANGE

0

X

I F A I L

f-tf*^

THE ARRAY A IS RECTANGULAR WITH LEADING C I M C N S I C N N L C .
THF SECOND DIME'iSICN MUST BE GREATER THAr' OR EODAL TC N.
THE ARRAY A IS ASSUMED TO HAVE THE P AC T-̂ o, [z AT I CN OF THE
MATRIX A AS OESCriBED IN T.HF SUBROUTINE SYMUPO.

THE LiHADING DI^£NSICN OP THE ARRAY A.

THE DIMENSION CF THE MATRIX A.

AN N OIMFMSIONAL VECTCR WHICH CONTAINS A DESCFIOTION
OF THE BLOCK STRUCTIiRF OF 0 , iND THE DcTE o MIN'A'.T
OF EACH 2X2 DIAGONAL OF C. SEE THE OOC J'-rNT AT I Of: P'̂ '̂
THE SUBROUTINE SY«UPC FOR A MOPE COMPLETF C'=S{FIPTION
OF THE CONTENTS OF CHANGE.

AN N DIMENSIONAL INTEGER A^RAY WHICH CCNTAINS T H E
PIVOTING USLO TO OBTAIN TH= f ACTCR IZAT I CiN OF A.

AN N DIMENSIONAL VECTCR. THE CONTENTS OF X ARE
DESCRIBED AoOVE.

AN INTEGER VARIABLE THAT INDICATES WHEN A IS SKvtULAR.
THE CONTENTS OF IFAIL ARE DESCRIBED A6CVE.

c**************************<**«*****«******««*•*•****'«*« ***»«***»***••
c

c
c
c
c

DOUBLE
INTEC?
DOUBLE
I F A I L
DO 10

; PRECISION T.S
K I , J , K , I P I . I P 2

PRECISION W(50)
= 0
J = l . N

W(J) = X (0 (J))
10 CONTINUE

BACKSOLVE THE LOWER TKIANGULAP SYSTEM AND INVERT THE CIAGONAL
BLCCKS

I = 1
20 IF (I

I P l «

1 •

. G E . N) GO TO 60
I • 1

IF (CHAr'GFI I P l) . G T . 0) GO TO 40
IF (CHANGF(IPl) .EO. 000) GO TO 1000

1 5 9 . 3

1 5 9 . 4
1 5 9 . 5
1 ^9 . fr
1 5 9 . 7
1 5 9 . 8
1 5 9 . 9
1 6 0 .
1 6 0 . 1
1 6 0 . 2
U 0 . 3
1 6 0 . 4
1 6 0 . 5
1 6 0 . 6
1 6 0 . 7
1 6 0 . 8
1 6 0 . 9
1 6 1 .
161 . 1
1 6 1 . 2
1 6 1 . 3
1 6 1 . 4
1 6 1 . 5
1 6 1 . 6
1 6 1 . 7
I t l . 0
l f c l . 9
1 6 2 .
I t 2 . 1
l t 2 . 2
1 6 2 . 3
1 6 2 . 4
1 6 2 . 5
1 6 2 . e
1 6 2 . 7
1 6 2 . 8
162.<=
1 6 2 .
1 6 3 . 1
1 6 3 . 2
1 6 3 . 3
1 6 2 . 4
1 6 3 . 5
1 6 3 . 6
1 6 3 . 7
1 6 3 . 8
1 6 3 . 9
1 6 4 .
I t 4 . 1
1 6 4 . 2
1 6 4 . 3
164 . <•
1 6 4 . f
1 6 4 . 6
1 6 4 . 7
1 6 4 . 8
1 6 4 . 9
1 6 5 .
1 6 5 . 1
1 6 5 . 2
1 6 5 . 3
1 6 5 . 4
1 6 5 . 5
1 6 5 . 6
1 6 5 . 7
1 6 5 . 8
1 6 5 . S
1 (6 .
.166 . 1

C 1 6 6 . 2
C WE HAVE A 2 X 2 PIVOT AT STFP I l e .6 .3
C 1 6 6 . 4

IP2 « I • 2 1 6 6 . 5
S = W(I) 1 6 6 . 6
T = W d P l) 1 6 6 . 7
IF (IP2 .GT. N) GC TO 130 1 6 6 . 8
DO 30 J = IP2,N 1 6 6 . 9

W(J) = W(J) - (S * A (J , n + T * A (J , I P 1)) 167 .
30 CONTINUE 1 6 7 . 1

130 CONTINUE 1 6 7 . 2
W d) = (A(I P l , I P l) * S - A(IPl ,I)*T)/CHANGE(IPl) 1 6 7 . 3
W(IPl) = (- A (I P l , n * S + A(I,I)*T)/CHANGE(IP1J 1 6 7 . 4
I ' IP2 1 6 7 . 5
60 TO 20 1 6 7 . 6

C 167-7
40 CONTINUE 1 6 7 . 8

C 1 6 7 . 9
C WE HAVE A 1 X 1 PIVOT AT STEP I 166 .
C 1 6 6 . 1

T = l»(I) 1 6 6 . 2
on 50 J = !P1,N 1 6 8 . 3

W(J) = W(J) - A (J , n * T 1 6 8 . 4
50 CONTINUE 1 6 8 . 5

IF (6 (1 , 1) .EQ. O.ODO) GO TO 1000 1 6 0 . 6
W(1) = W (I) / A (I , 1) 1 6 6 . 7
I = IPl l f E . 8
GO TG 20 1 6 8 . 9

C 1 6 9 .
60 I = N 1 6 9 . 1

C 1 6 9 . 2
C INVERT THE LAST DIAGONAL BLOCK ANC INITIALIZE 169.3
C FOR THE FORWARD SOLUTION 169.4
C 169.5

IF (CHANGP(I) .GT. O.OCO) GC TO 65 169.6
IF (CHANGF(I) .=Q. OCO) GO TC 1000 169.7

C 169.8
C THE LAST BLOCK IS 2 X 2 1 6 9 . 9
C IT HAS ALREADY BEEN INVERTED 1 7 0 .
C 1 7 0 . 1

IPl = I - 1 1 7 0 . 2
1 = 1 - 2 1 7 0 . 3
GQ TO 70 1 7 0 . 4

C 170 . 5
65 CONTINUE 1 7 0 . 6

C 1 7 0 . 7
C THE LAST BLOCK IS 1 X 1 170.tt
C 170.9

IC (A(N,N) .EO. O.ODO GO TO 1000 1 7 1 .
WIN) = W(N)/A(N,N) 1 7 1 . 1
IPl = I 1 7 1 . 2
I « I - 1 1 7 1 . 3

C 1 7 1 . 4
70 CONTINUE 1 7 1 . 5

C ni.6
C FORWARD S0LV6 THE REMAINING UPPER TRIANGULAR SYSTEM 171.7
C 171.8

IF (I .LE. 0) GO TO 1001 171.9
IF (CHANGE(I) .GT. O.OCO) GO TO 90 172.

C 172.1
C 2 X 2 PIVOT 1 7 2 . 2
C 1 7 2 . 3

IP2 = IPl 1 7 2 . 4
IP l * 1 1 7 2 . 5
I « I - 1 1 7 2 . 6
DO 80 J = IP2,N 1 7 2 . 7

W(IPl) = W(IPl) - A(J , IP1)*W(J) 1 7 2 . 8
V(I) = H(I) - A (J , I) * W (J) 1 7 2 . 9

80 CONTINUE ,173 .

152

C
c
c

I P l = I
I " = 1
GO TO 70

I X 1 P

1 7 3 .)
1 7 3 . 2
1 7 3 . 3

PIVOT 1 7 3 . 5

m.'
9 0 0 0 100 J = I P l . M 1 7 3 . 7

W(I) « W(I) - A (J , I) * W (J) 1 7 3 . b
100 CONTINUF 1 7 3 . 9

I P l = I 1 7 4 .
I = 1 - 1 1 7 4 . 1
CO TO 70 1 7 4 . 2

C 1 7 4 . 3
C 1 7 4 . < .

1 0 0 0 CONTINUE 1 7 4 . 5
C 1 7 4 . 6
C THE WATRIX IS SINGULAR 1 7 4 . 7
C 1 7 4 . £

IFAIL = 1 174.<^
RETURN 1 7 5 .

C 1 7 5 . 1
1 0 0 1 CONTINUE 1 7 5 . 2

C 1 7 5 . 3
C THIS IS THE NORMAL RETURN . . . A SOLUTION WAS FOUND 1 7 5 . 4
C 1 7 5 . 5

DO n o J = l . N 1 7 5 . 6
X (Q (J)) = W{J) 1 7 5 . 7

110 CONTINUE 1 7 5 . (•
RETURN 1 7 5 . 9
ENO 1 7 6 .

Acknowledgments

First of all, I wish to express my deep appreciation to

Professor James R. Bunch. He has generously given his time, energy, and

valuable advice to help me with this dissertation. He has also given me

many fine opportunities that have enriched both my personal and academic

lives. Working under his guidance has been a very rewarding experience.

I would also like to thank the other members of the doctoral

committee: Professors John W. Evans, John A. Trangenstein,

Walter A. Burkhard, and Michael L. Fredman. A special note of thanks

goes to Dr. Jorge J. More for stimulating my interest in optimization

and for many discussions and helpful suggestions.

There are many people who have not been directly involved in the

preparation of this thesis, and yet who have Influenced my thoughts.

They have been my teachers along the way, and my gratitude for their

gift of knowledge is endless. A few people deserve special mention.

Professor John W. Evans and Professor Murray Rosenblatt at University of

California, San Diego gave me the opportunity to gain computing exper

ience by working on their research projects. Dr. Gary Leaf and

Dr. Mike Minkoff provided a stimulating summer project at Argonne

National Laboratory in 1975.

In addition, I would like to express my appreciation to the Na

tional Science Foundation for financial support under NSF grants MCS

76-03139 and MCS 76-17548. I also appreciate the financial support

from the Applied Mathematics Division at Argonne National Laboratory.

Finally, I want to thank Ms. Judy Beumer for an excellent job

of typing and for her infinite patience.

154

References

[I] Aasen, J. 0., "On the Reduction of a Symmetric Matrix to Tri
diagonal Form," BIT, 11, (1971), 233-242.

[2] Armijo, L., "Minimization of Functions Having Lipschltz Continuous
First Partial Derivatives," Pac. J. Math. 16, (1966), 1-3.

[3] Bunch, J. R., "Analysis of the Diagonal Pivoting Method," Slam J.
Numer. Anal.. 8, (1971), 656-680.

[4] Bunch, J. R. and Kaufman, L., "Some Stable Methods for Calculat
ing Inertia and Solving Symmetric Linear Systems," Math, of Comp.,
31, (1977), 162-179.

[5] Bunch, J. R. and Parlett, B. N., "Direct Methods for Solving

Symmetric Indefinite Systems of Linear Equations," Slam J. Numer.
Anal., 8, (1971), 639-655.

[6] Dahlqulst, G. and Bjork, A., Numerical Methods, Prentice-Hall Inc.,
New Jersey, 1974.

[7] Dennis, J. E. and Morg, J., "Quasi Newton Methods, Motivation and
Theory." SIAM Review, 19, (1977), 46-89.

[8] Fletcher. R. and Freeman, T. L., "A Modified Newton Method for
Minimisation," U. of Dundee Rept. No. 7, (1975).

[9] Fletcher, R. and Powell, M. J. D., "Modifications of LDL Factor
izations," Matlu__of_Com2j., 28, (1974), 1067-1087.

[10] Forsythe, G. E. and Moler, B. C , Computer Solutions of Linear
Algebraic Systems, Prentice-Hall, 1967.

[II] Gill, P. E. and Murray, W., "Newton Type Methods for Unconstrained
and Linearly Constrained Optimization," Math. Prog.. 7. (1974).
311-350.

[12] Gill, P. E. and Murray. W., "Safeguarded Steplength Algorithms for
Optimization Using Descent Methods," NPL Rept. NAC37. (1974).

[13] Gill, P. E., Golub, G. H., Murray, W.. Saunders, M. A., "Methods
for Modifying Matrix Factorizations." Math, of Comp., 28, (1974),
505-535.

[14] Gill, P. E., Murray, W., Saunders, M. A., "Methods for Computing
and Modifying the LDV Factors of a Matrix," Math, of Comp., 29,
(1975), 1051-1077.

155

[15] Hillstrom, K. E., "A Simulation Test Approach to the Evaluation
and Comparison of Unconstrained Nonlinear Optimization Algo
rithms," Rep. ANL-76-20, Argonne National Laboratory, Argonne, IL,
(1976).'

[16] McCormick, G., "Second Order Convergence Using a Modified Armijo
Step Size Rule for Function Minimization," The George Washington
University Serial T-328. (1976).

[17] Ortega, J. M. and Rheinbolt, W. C , Iterative Solution of Non
linear Equations in Several Variables. Academic Press, New York,
(1970).

[18] Powell, M. J. D., "A New Algorithm for Unconstrained Optimization,"
Nonlinear Programming. J. B. Rosen. 0. L. Mangasarian and
K. Ritter, eds.. Academic Press, New York, (1970).

[19] Stewart, G. W., Introduction to Matrix Computations. Academic
Press, New York, 1973.

[20] Wilkinson. J. H., The Algebraic Eigenvalue Problem. Clarendon
Press. Oxford. 1965.

156

Distribution for ANL-77-49

Int

B.
R.
P.
C.
D.
A.
ANl
ANl
ANl

Ext

:ernal:

Ancker-Johnson
J. Royston
Witkowski
E. Till

(10)

C. Sorensen (74)
B. Krisciunas
. Contract
. Libraries
. TIS Files

ernal:

Copy
(5)
(6)

ERDA-TIC, for distribution per UC-32 (201)
Manager, Chicago Operations Office
Chief, Chicago Patent Group
President, Argonne Universities Association
Applied Mathematics Division Review Committee:

P. J. Eberlein, SUNY at Buffalo
G. Estrin, U. California, Los Angeles
W. M. Gentleman, U. Waterloo
J. M. Ortega, NASA Langley Research Center
E. N. Pinson, Bell Telephone Labs.
S. Rosen, Purdue U.

ARGONNE NATIONAL lAB WEST

